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Besides clustering and classification, detection of atypical elements (outliers, rare elements) is one of the most fundamental
problems in contemporary data analysis. However, contrary to clustering and classification, an atypical element detection
task does not possess any natural quality (performance) index. The subject of the research presented here is the creation
of one. It will enable not only evaluation of the results of a procedure for atypical element detection, but also optimization
of its parameters or other quantities. The investigated quality index works particularly well with frequency types of such
procedures, especially in the presence of substantial noise. Using a nonparametric approach in the design of this index
practically frees the proposed method from the distribution in the dataset under examination. It may also be successfully
applied to multimodal and multidimensional cases.
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1. Introduction

The issue of detecting atypical elements (Aggarwal,
2013; Hodge, 2011; Ranga Suri et al., 2019) constitutes
one of the main tasks of modern data analysis (Ott
and Longnecker, 2015) and data exploration (Kacprzyk
and Pedrycz, 2015; Nisbet et al., 2009; Pedrycz and
Chen, 2017). Such elements may be considered in
a couple of ways. The most popular one is to
connect them with the gross errors hampering these
elements of the set under investigation, which can
subsequently be corrected or even eliminated. The
other, uncommon but more constructive, treats atypical
elements as unconventional phenomena, natural talents,
and as new trends; they constitute remarkably beneficial

*Corresponding author

information, stimulating exceptional behaviors, and
innovative thinking. Investigations concerning atypical
elements find a variety of practical usages in many
disciplines. In medicine, deviations from norms may
indicate illness or pathologies; in technology, faults
in a supervised plant; in banking, a fraud attempt;
in computer science, hacker attacks. Other possible
indicators of atypical elements may also be threats to
public order, earthquakes, weather anomalies, climate
change or ecological dangers, and many others (Cateni
et al., 2008; Kulczycki and Kruszewski, 2019).

A universal definition of atypical elements does not
exist. A generic one states that they are created by
a different mechanism than the rest. However, such
a broadly formulated concept does not help to identify
them in a dataset considered and influences a large,
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if not even excessive from an applicational point of
view, variety of methods used for this purpose. Most
of them are based on the measure of distances between
points (a distance-based approach) or the probabilities of
particular element occurrences (a frequency approach).
This does not exhaust all possibilities; an illustrative
example can be an influential approach where elements
whose removal from the population changes the model
used the most are considered atypical.

Many contemporary methods are based on
algorithms of classic data analysis, appropriately
adapted for the needs of atypical element detection. The
leading concept is here clustering, both in distance-based
as well as frequency approaches. Atypical elements
can be those which form clusters of low cardinalities or
those which do not belong to any cluster at all (e.g., the
DBSCAN procedure), or are the most distant from the
centers they were assigned to. Another universal tool is
the distance-based k-nearest neighbors (kNN) method,
commonly used for classification—the decision whether
a studied element is typical or not is made on the basis of
the distances to the closest points. It is worth mentioning
here a related aspect, i.e., in some concepts, only a local
neighborhood of the tested element should be taken
into account (see, e.g., the algorithm LOF related with
kNN). One more group contains methods originating
from the classic three-sigma rule, where the elements
placed more than three standard deviations away from
the mean value are considered atypical. One can include
here the Z-score method and its valuable modification
MAD-score based on quantiles. The innovative concept
concerns encoders—neural networks specialized in
atypical element detection. Namely, information about
the analyzed set is coded and then encoded to obtain
information as close as possible to what was first; the
elements encoded the furthest with regards to their initial
locations are treated as atypical. Similarly, mutations of
the well-known and tested in practice methods, i.e., the
support vector machines and the decision trees, or after
generalization the decision forests, were created for the
atypical element detection task.

The above abbreviated outline does not exhaust
all the methods used for atypical element detection
(see Aggarwal, 2013; Hodge, 2011; Ranga Suri et al.,
2019). However, even that depicts the diversity of the
concept applied and, in consequence, indicates the need
for constructing an index showing the quality of the
results of actions of particular methods. Accordingly,
it also becomes possible to change the values of the
inner parameters, which were optimized in these adopted
procedures according to their main purpose and not for the
needs of atypical element detection.

Contrary to clustering and classification, the task
of detecting atypical elements does not possess natural
quality (performance) indexes like, for example, those

based on the sum of intracluster and intercluster distances
or the Silhouette index for clustering (Batool and Hennig,
2021; Kłopotek et al., 2020), as well as precision,
accuracy or recall in the case of classification (Czmil
et al., 2024; Dalianis, 2018). This has a variety of negative
repercussions, in particular the inability of automatic
improvement in the procedures used for atypical element
detection. As an initial illustration, let us take, for
instance, a set generated from a two-dimensional standard
normal distribution “contaminated” with a uniform noise.
Figure 1 shows two example divisions of this set into
atypical and typical elements, obtained with different
parameters of the atypical element detection procedure.
Which of them is better, which to choose? Or maybe
something in-between? How can one construct a quality
index helpful in decision making? Additionally, can
parameters of an atypical element detection procedure be
improved? These problems will constitute the subject of
investigations presented in this paper. The above example
will be made more precise (see Eqn. (23)) and continued
at the beginning of Section 5.1. In particular, one may
compare Fig. 1 to the right panel of Fig. 2, which indicates
the result that is intermediate with respect to both the
options from Fig. 1, and optimal in terms of the proposed
quality index.

Finally, the subject of this paper is the creation of
a quality index of the atypical element detection procedure
based on the frequency approach, when atypical elements
are considered rare, i.e., whose probability is small.
Apart from the quality evaluation of the division of
the analyzed set into atypical and typical, the presented
material can serve as a methodological basis for the
task of determining or improving the values of the
parameters or other quantities of the decision model
used to distinguish atypical elements. The proposed
procedure can be applied with respect to the set with
practically any distribution, in particular multimodal
and incoherent (consisting of many components), and
also in the multidimensional cases. The simplicity
and illustrativeness of the investigated procedure seems
to be especially valuable for a deeper interpretation
as well as potential individual modifications. Thus,
Section 2 briefly presents a mathematical base—the
statistical kernel estimators methodology. The quality
index is designed in Section 3 and discussed in Section 4.
Next, Section 5 demonstrates the results of the numerical
verification using illustrative synthetic data (Section 5.1)
and benchmarks (Section 5.2). The summary and
bibliography conclude this work.

2. Preliminaries: Kernel estimators
First, assume the n-element set of D-dimensional vectors
with continuous attributes:

x1,x2, . . . ,xn ∈ R
D. (1)
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(a) (b)

Fig. 1. Two example divisions of an analyzed set into atypical (grey crosses) and typical (black circles) elements for different pa-
rameters of the atypical element detection procedure (note that crosses and circles symbolizing atypical and typical elements,
respectively, merge together in dense areas).

The kernel estimator f̂ : RD → [0,∞) of the distribution
density (Chacon and Duong, 2020) of the dataset (1) can
be defined as

f̂(x) =
1

n

n∑

i=1

K (x, xi, h) , (2)

while after separating into coordinates one has

xi =

⎡

⎢⎢⎢⎣

xi,1

xi,2

...
xi,D

⎤

⎥⎥⎥⎦ , i = 1, 2, . . . , n,

x =

⎡

⎢⎢⎢⎣

x1

x2

...
xD

⎤

⎥⎥⎥⎦ , h =

⎡

⎢⎢⎢⎣

h1

h2

...
hD

⎤

⎥⎥⎥⎦ , (3)

where the constants hd > 0 (for d = 1, 2, . . . , D)
are named smoothing parameters; the kernel
K : RD → [0,∞) will hence be used in the product
form

K (x, xi, h) =
D∏

d=1

1

hd
Kd

(
xd − xi,d

hd

)
, (4)

whilst the one-dimensional kernels Kd : R → [0,∞),
for d = 1, 2, . . . , D, are measurable with unit integral∫
R
Kd(y) dy = 1, symmetrical with respect to zero, and

have a weak global maximum in this place. (However,
nothing prevents from the use of other types of kernels,
e.g., radial or asymmetrical, in the procedure presented
here.)

In general, the choice of the kernels Kd is
insignificant in practice, and one should primarily take

into account the advantageous features of the constructed
estimator, e.g., continuity, differentiability, or convenient
integrability. Thus, the one-dimensional normal kernel
Kd : R → [0,∞), i.e.,

Kd(x) = K(x) =
1√
2π

exp

(
−x2

2

)
,

d = 1, 2, . . . , D, (5)

is usually considered basic and will be applied hereinafter
for each coordinate. (Again, nothing prevents from the
employment of other forms of the kernels, especially not
the same for each coordinate.)

In contrast, the determination of the values of
the smoothing parameters hd is generally vital for the
estimation quality. It is fortunate that many convenient
procedures for calculating these values exist. Notably, in
the one-dimensional (D = 1) case, the concept based
on the normal distribution may initially be proposed in
practice. Then, one has

h =

(
8
√
π

3

W (K)

U(K)2
1

n

)1/5

σ̂ , (6)

where the estimator of the standard deviation σ̂ may
be calculated with classic formulas (Lehmann and
Casella, 2011), and W (K) =

∫∞
−∞ K(y)2 dy and

U(K) =
∫∞
−∞ y2K(y) dy; for the normal kernel (5)

we have W (K) = 1/2
√
π and U(K) = 1. In the

multidimensional case, during the initial phase of the
research without excessive performance requirements, the
formula (6) can be used to each individual coordinate
d = 1, 2, . . . , D. In the remainder of the situations, one
of the methods collected by Chacon and Duong (2020)
may be applied. In some cases, particular concepts
possibly matching the model to the reality considered,
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e.g., the support boundary (Kulczycki, 2005; Silverman,
1986), can be employed. Further information on kernel
estimators is available in the classic monographs by
Chacon and Duong (2020) or Wand and Jones (1995);
example applications can be found in the works of
Baszczyńska (2016), Charytanowicz et al., (2018; 2020),
or Kulczycki (2020). Kernel estimators in the presence of
categorical and discrete attributes are described by Agresti
(2002) as well as Rajagopalan and Lall (1995).

3. Quality index
Consider the data set (1) comprising both atypical and
typical elements. Using the content of Section 2, one
may specify the density estimator f̂ of the above data set
distribution. Then, from the statistical point of view, the
value f̂(xi) can be interpreted as the occurrence frequency
of the element xi in the population characterized by the
analyzed set (1).

Let us introduce a partition of the n-element set (1)
into the nt-element subset of typical elements

xt
1,x

t
2, . . . ,x

t
nt

(7)

and the nat-element subset of atypical elements

xat
1 ,xat

2 , . . . ,xat
nat

, (8)

obtained using any available method. Indeed, the sets (7)
and (8) are disjoint, whereas their union constitutes the set
(1) and

nat + nt = n. (9)

The inequality
nat < nt (10)

is also justified, otherwise the atypical elements would
become typical. In practice, nat is less than nt between
two to 100 times, therefore, the share of the atypical
elements is generally from 1% to 30%:

0.01 ≤ nat

n
≤ 0.3 . (11)

The quality index defined below should grade the quality
of the partition of the set (1) into typical (7) and atypical
(8).

For the elements from the sets (7) and (8) one can
calculate, respectively,

f̂(xt
1), f̂(x

t
2), . . . , f̂(x

t
nt
) (12)

and
f̂(xat

1 ), f̂(xat
2 ), . . . , f̂(xat

nat
). (13)

Additionally, we can sort the set (12) non-decreasingly so
that

f̂(xt
1) ≤ f̂(xt

2) ≤ f̂(xt
nt
). (14)

In the case of the frequency approach for the quality
index being designed herein, the requirement is natural for
the value

1

nat

nat∑

i=1

f̂(xat
i ) , (15)

characterizing atypical elements, to be the lowest possible.
On the contrary, the values f̂(xt

i) corresponding to
typical elements should be generally as high as possible.
However, these elements for which f̂(xt

i) is large
(e.g., located near the global mode) should not influence
the choice of atypical elements since they are too distinct
and their role in the population is completely different.
Let us limit our discussion to these nat among typical
elements1 which have the lowest value f̂(xt

i), i.e., those
being as though “frequently the closest” to atypical
elements. They are those that should have a real impact
on the grading of the partition into atypical versus typical
elements. Taking into account the order of the set (12)
after sorting (14), we therefore require the average

1

nat

nat∑

i=1

f̂(xt
i) (16)

to be as large as possible. Joining the conditions (15) and
(16), we obtain the following quality index:

QIKFC =

nat∑
i=1

f̂(xat
i )

nat∑
i=1

f̂(xt
i)

. (17)

The smaller the value of QIKFC, the sharper the division
into atypical and typical elements. This is more firm, and
in the majority of applications simply better, “stronger”.
The use of the kernel K with the positive values, e.g.,
normal (5), to construct the estimator f̂ guarantees the
denominator to be nonzero while the quality index QIKFC
is then positive.

Finally, if the studied aspect of the procedure of
the division into atypical and typical elements can be
modified, for example, by changing the values of the
parameters existing there, then the index QIKFC (17)
should be minimized. One can thus note informally

QIKFC =

nat∑
i=1

f̂(xat
i )

nat∑
i=1

f̂(xt
i)

→ min. (18)

(The lower index KFC originates from the authors’
surnames, which coincides by chance with the name of
a chain of fast food restaurants.)

1Note the use of the parameter nat instead of nt natural for the typ-
ical elements.
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4. Comments and practical suggestions
The procedure for evaluating the index QIKFC (17) value
can be synthetically expressed in the form of Algorithm 1.

All the procedures applied in Section 3 have linear
computational complexity with respect to n and D, apart
from the method for calculating the smoothing parameter
value and the sorting algorithm, with the complexity from
linear to quadratic depending on the employed procedure
(Chacon and Duong, 2020; Knuth, 1988). Current
computer systems enable effortless computations for n up
to a range from 1, 000 to 100, 000 when the computing
time does not exceed a few seconds. If, apart from
the continuous attributes, categorical and/or discrete
ones occur, the kernel estimator can be generalized
according to the investigations published in the subject
literature, (e.g., Agresti, 2002; Rajagopalan and Lall,
1995). The material presented here is also convenient in
such situations.

The very nature of the above described issue leads to
the natural procedure for atypical element detection. Let
us calculate for all elements of the set (1) the values of
the kernel estimator which, after sorting in nondecreasing
order, can be noted as

f̂(x1) ≤ f̂(x2) ≤ . . . ≤ f̂(xn) . (19)

The division of the set (1) into subsets of typical (7)
and atypical (8) elements, under this procedure, consists
in finding the index at which the quality index (17) is
minimized, subject to the condition (11), belonging to the
set

{�0.01n�, �0.01n�+ 1, . . . , �0.3n�} , (20)

where �·� means rounding up to the nearest integer.
Finally, we are searching for the value n∗

at minimizing the
expression

min
nat∈{�0.01n�,�0.01n�+1,...,�0.3n�}

nat∑
i=1

f̂(xi)

2nat∑
i=nat+1

f̂(xi)

, (21)

therefore

n∗
at = arg min

{�0.01n�,�0.01n�+1,...,�0.3n�}

nat∑
i=1

f̂(xi)

2nat∑
i=nat+1

f̂(xi)

.

(22)
Elements with the indexes i ≤ n∗

at (after renumbering
(19)) are treated as atypical, while the remainder of
elements, i.e., those for which n∗

at < i, are considered
typical. Such a division is optimal in the sense of the index
(17).

The procedure presented as Algorithm 2 constitutes
an extension of the algorithm presented in the paper by

Algorithm 1. Evaluation of the quality index QIKFC.

1: Load datasets
{
xt
1,x

t
2, . . . ,x

t
nt

}
and{

xat
1 ,xat

2 , . . . ,xat
nat

}
.

2: Based on the union of the above sets, calculate kernel
estimator f̂ (Section 2).

3: Sort set
{
f̂(xt

1), f̂(x
t
2), . . . , f̂(x

t
nt
)
}

.

4: Using nat smallest elements of above set and
set {f̂(xat

1 ), f̂(xat
2 ), . . . , f̂(xat

nat
)}, evaluate index

QIKFC (17).

Algorithm 2. Atypical element detection based on the
quality index QIKFC.

1: Load analyzed set {x1,x2, . . . ,xn}.
2: Using the above set, calculate kernel estimator f̂

(Section 2).

3: Sort set
{
f̂(x1), f̂(x2), . . . , f̂(xn)

}
.

4: for nat from �0.01n� to �0.3n� do

5: Treating {f̂(xat
1 ), f̂(xat

2 ), . . . , f̂(xat
nat

)} as
typical set, calculate quality index QIKFC (17).

6: end for

7: Specify n∗
at, i.e., a value of nat for which index

QIKFC is smallest.

8: Provide a graph of index QIKFC as a function of nat

and partition of the investigated set into atypical and
typical elements for n∗

at.

9: If n∗
at = �0.3n� carry out an individual case study.

Kulczycki and Kruszewski (2017), supplemented with
the optimal choice of the parameter r value, which
arbitrarily defined there the share of atypical elements
in the analyzed set (1). This optimization is based on
the quality index QIKFC (17) proposed in this paper. In
consequence, Algorithm 2 does not require fixing any
parameter or other quantity value, which is a beneficial
feature in practice.

As hereby shown, the concept of the quality index
investigated in this paper can be used to improve the
atypical element detection procedure through fixing or
modifying the values of its parameters. In particular,
applying the above procedure to detect atypical elements,
we can change the smoothing parameter h value used
in the construction of the kernel estimator (2) in order
to improve the quality index QIKFC (17) value. Another
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example follows: in the case of using the k-nearest
neighbors method (Yang et al., 2023), the index proposed
above can be used to fix the value of the parameter
k. It should, however, be remarked that connecting
the distance-based k-nearest neighbors method with the
frequency index QIKFC (17) may potentially introduce
interpretational ambiguity.

5. Applications, experimental verification
5.1. Synthetic data. Let us discuss the quality index
QIKFC (17) applied to synthetic data with easy-to-illustrate
features. First, consider the two-dimensional case (D =
2) and the dataset with the distribution

(1− a)n N
([

0
0

]
,

[
1 0
0 1

])
+ a n U([−10, 10]) ,

(23)
where N (µ,Σ) denotes the two-dimensional normal
distribution with the vector of expected values µ and the
covariance matrix Σ, while U(A) is the two-dimensional
uniform distribution on the interval A with independent
coordinates, whereas the parameter a ∈ [0, 1] defines the
share of the above factors. The first of them represents
typical elements and the second, which plays the role of
noise, atypical ones. For clarity of the figures, the relative
small size n = 1, 000 was assumed. The classic plug-in
method was applied for calculation of the smoothing
parameter h value of the kernel estimator (2)–(5). The
large robustness of the investigated procedure with respect
to this parameter should be underlined. The impacts of the
possible changes in the parameter h generally reduce one
another in the nominator and denominator in the definition
of the quality index (17). Moreover, the possibility of
optimization of the parameters appearing in the procedure
used for atypical element detection frees the result from
the smoothing parameter h value obtained using classic
criterions based on the L2 norm; in this case, such a value
takes on the role of only a reference state, as an initial
point for further iterations (compare Figs. 8 and 9). From
a practical point of view, these are valuable features.

Three cases of the distribution (23) will be
considered, with a = 0.05 being an example of a small
number of atypical elements, a = 0.1 medium, and
a = 0.2 large.

The left panel of Fig. 2 shows the values of the
quality index QIKFC (17) for the particular quantities
n∗
at/n with the range from 0.01 to 0.3 (see the condition

(11)). The minimum occurs for n∗
at/n = 0.084 (see the

notation (22) with (9)). The numbers of selected atypical
and typical elements correctly amounted to 84 and 916,
respectively. The division of the set (23) into atypical and
typical elements for the optimal value n∗

at/n is illustrated
in the right panel of Fig. 2.

Let us return to the initial example from Section 1.
The left panel of Fig. 1 was obtained with the arbitrarily

assumed value n∗
at/n = 0.047, whereas the right one

with n∗
at/n = 0.140. In the former, there are too

few atypical elements, and in the latter there seem to
be too many. The above result, n∗

at/n = 0.084,
minimizing the quality index QIKFC (17), constitutes a
valuable compromise, found “automatically”, without the
subjective judgment of an analyst. Note that, in higher
dimensionality, such evaluation may be impossible, yet
apart from naturally increased requirements concerning
the size of the analyzed set (1) the procedure optimizing
the quality index QIKFC (17) does not change.

Similar results obtained for medium and large noise
are shown in Figs. 3 and 4. The values of the minimum of
the quality index QIKFC (17) increased to n∗

at/n = 0.132
and n∗

at/n = 0.232, respectively, roughly proportional to
the growth in the value of a. In the first case, the numbers
of the atypical and typical elements in consequence
amounted to 132 and 868, whereas in the second to 232
and 768.

Consider now the set HM with the distribution
density in the form of two half-moons partially
overlapping one another, with the noise of the uniform
distribution

(1− a)n HM+ a n U([−4, 4]), (24)

where the notation is compliant with that introduced
in the formula (23), while the two-dimensional
set with the distribution HM was generated using
the method make_circles of scikit-learn
(scikit-learn, 2004), additionally transferring the
coordinates so that the arithmetic means of both
attributes equal zero. The shape of this distribution
density is shown in the valid parts (b) of Figs. 5–7.

All corollaries formulated earlier for the normal
distribution (23) also remain valid in the case of the set
(24), which seems to be fairly troublesome to analyze.
Special attention should be paid to the correctly detected
elements placed in the valley between the half-moons.
For the small (a = 0.05), medium (a = 0.1),
and large (a = 0.2) noise, the minimum quality
index QIKFC (17) occurred at n∗

at/n = 0.043, 0.089,
and 0.182, respectively; it therefore properly increased,
approximately proportionally to the value of a. The
number of atypical and typical elements amounted, in
consequence, to 43 and 89, 182 and 957, 911 and 818.

In both of the above examples, the number of atypical
elements correctly increased as the noise share grew.
Such a relation occurred successively for all examined
values of the parameter a. Similar results were obtained
in many cases studied for a variety of distributions in
the presence of noise. The index QIKFC (17) rightly
judged the quality of the division into atypical and typical
element subsets, while the dependency of its value on
the quantity nat/n mostly had one proper (i.e., placed in
the interior of a domain) minimum. The results of the
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(a) (b)

Fig. 2. Results for the distribution (23) with small noise (a = 0.05): values of the quality index QIKFC (17) for particular nat/n values
(a), division of the set (23) into atypical (grey crosses) and typical (black circles) elements for the optimal value n∗

at/n = 0.084
(b) (note that circles symbolizing typical elements merge together in the central area).

(a) (b)

Fig. 3. Results for the distribution (23) with medium noise (a = 0.1): values of the quality index QIKFC (17) for particular nat/n
values (a), division of the set (23) into atypical (grey crosses) and typical (black circles) elements for the optimal value
n∗
at/n = 0.132 (b) (note that circles symbolizing typical elements merge together in the central area).

(a) (b)

Fig. 4. Results for the distribution (23) with large noise (a = 0.2): values of the quality index QIKFC (17) for particular nat/n values
(a), division of the set (23) into atypical (grey crosses) and typical (black circles) elements for the optimal value n∗

at/n = 0.232
(b) (note that circles symbolizing typical elements merge together in the central area).
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Table 1. Numbers of elements indicated as atypical by Algo-
rithm 2 and correct classification of elements from
Class 2 for the distribution (23), using the notation
“mean value ± standard deviation”, calculated on the
basis of 100 measurements.

a = 0.05 a = 0.1 a = 0.2
A2 47.25± 1.75 94.56± 2.56 189.08± 2.90
NB 45.07± 2.32 90.65± 2.77 184.08± 4.22

kNN 38.98± 3.04 84.0± 3.82 176.85± 5.14
DT 43.68± 2.72 88.81± 3.28 180.86± 5.08

Table 2. Numbers of elements indicated as atypical by Algo-
rithm 2 and correct classification of elements from
Class 2 for the distribution (24), using the notation
“mean value ± standard deviation”, calculated on the
basis of 100 measurements.

a = 0.05 a = 0.1 a = 0.2
A2 44.87± 2.15 88.59± 2.88 173.46± 5.43
NB 22.11± 3.36 54.29± 5.36 127.46± 7.07

kNN 32.16± 3.53 75.57± 4.48 163.49± 5.46
DT 40.59± 2.75 85.34± 3.60 175.32± 5.33

natural procedure for the division into atypical and typical
elements presented in Section 4 were readily interpretable
and the procedure itself complete (i.e., no fixing of any
parameter or other quantity value is necessary).

The above examples will be used to conduct a
comparative study. In the literature, there is a lack of
methods which can be directly compared with the concept
proposed here. Let us then treat the first factor existing
in the formulas (23) and (24) as an element of Class 1,
and the second factor, representing noise, as an element
of Class 2. The share of the latter nat/n is specified
by the parameter a with values, subsequently, 0.05, 0.1,
and 0.2. The sizes of both the learning and testing sets
again equal n = 1, 000. The classic methods: the naive
Bayes (NB), k-nearest neighbors (kNN), and the decision
tree (DT) with standard parameters (James et al., 2023)
were subsequently used for classification. The results are
shown in Tables 1 and 2. Placed there were the numbers
of elements indicated as atypical by Algorithm 2 (A2)
described in Section 4, and the correct classifications of
the elements from Class 2 were considered to be noise.

The results obtained using Algorithm 2 are more
favorable in both the greater average of the number
of detected atypical elements (or correctly classified
elements of Class 2) and the lower standard deviation.
Only in the case of the distribution (24) with a = 0.2
(right column of Table 2) were slightly better results
achieved by the decision tree method. This took place
despite Algorithm 2 being an unsupervised method,
whereas the supervised classification procedures benefited

from additional information in the form of patterns of
both classes. Such valuable results of Algorithm 2 were
reached to a large degree thanks to the optimization of
the parameter n∗

at/n provided based on the quality index
QIKFC (17) investigated in this paper. Similar profits can
be obtained by using it with respect to other aspects of
atypical element detection methods.

It should be stressed that, in the case of the lack
of noise, the results were mainly correct, although, it is
harder to judge their accuracy by nature. In particular,
in the case when the minimum occurred on the borders of
the admissible arguments interval (11), i.e, for 0.01 or 0.3,
an additional individual analysis is worth recommending,
especially considering possible local minima of the
function QIKFC placed in the interior (see Fig. 10). In such
cases, one should also consider modifying the values of
the parameters or other quantities of an atypical element
detection procedure. These concepts will be illustrated in
the next section (see Figs. 8 and 9).

5.2. Experimental data. The results obtained with
synthetic data will be additionally illustrated using real
experimental data accessible on the Internet, from the
fields of medicine and sociology (Kaggle, 2024) as well
as astronomy (Caltech, 2024).

Consider the number of suicides in 36 European
countries (excluding ministates and Moldovia, North
Macedonia, as well as those partially in Asia) and in
the years between 1985 and 2016 (from two surveys
in the case of Bosnia and Hercegovina, to 32 for
Austria and Iceland) (Kaggle, 2024). Special attention
will be paid to the midlife crisis of 35–54 year-olds.
At this critical time of life, people become aware of
the missed opportunities and unrealized plans, with an
escalation of comparing oneself most often to those who
are exceptionally successful. This process, because of
cultural and environmental factors, affects mostly men.
The size of the analyzed set is n = 923.

Figure 8 illustrates the joint distribution of the
number of suicides and the GDP income in the case
of men, for particular countries and years. Panel (a)
shows the values of the quality index QIKFC (17) for
specific values of nat/n in the range from 0.01 to
0.3. The minimum appears for n∗

at/n = 0.088. In
Panel (b), the atypical elements obtained for this value
are presented; 82 such elements were selected. They
are aggregated into four groups denoted in Fig. 8 as
A, B, C, and D. The first is made up of Iceland,
Luxembourg, Norway, and Switzerland, i.e., the countries
with the highest GDP per person. It is clear that, in this
group, the number of suicides clearly oscillates around
20 per one million inhabitants, which becomes a sort
of “sociological noise” of a magnitude independent of
the level of wealth of the state in group A. Group D
characterizes European countries with the lowest income,
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(a) (b)

Fig. 5. Results for the distribution (24) with small noise (a = 0.05): values of the quality index QIKFC (17) for particular nat/n values
(a), division of the set (24) into atypical (grey crosses) and typical (black circles) elements for the optimal value n∗

at/n = 0.043
(b) (note that circles symbolizing typical elements merge together in the central area).

(a) (b)

Fig. 6. Results for the distribution (24) with medium noise (a = 0.1): values of the quality index QIKFC (17) for particular nat/n
values (a), division of the set (24) into atypical (grey crosses) and typical (black circles) elements for the optimal value
n∗
at/n = 0.089 (b) (note that circles symbolizing typical elements merge together in the central area).

(a) (b)

Fig. 7. Results for the distribution (24) with large noise (a = 0.2): values of the quality index QIKFC (17) for particular nat/n values
(a), division of the set (24) into atypical (grey crosses) and typical (black circles) elements for the optimal value n∗

at/n = 0.182
(b) (note that circles symbolizing typical elements merge together in the central area).
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(a) (b)

Fig. 8. Results for the joint distribution of suicides of men aged 35–54 (per one million inhabitants—horizontal axis) and GDP (in
1,000 USD per person—vertical axis): values of the quality index QIKFC (17) for particular nat/n values (a), division into
atypical (grey crosses) and typical (black circles) elements for the optimal value n∗

at/n = 0.088 (b).

(a) (b)

Fig. 9. Results for the joint distribution of suicides of men aged 35–54 (per one million inhabitants—horizontal axis) and GDP (in
1,000 USD per person—vertical axis), with the value of smoothing parameter h multiplied by 7.1: values of the quality index
QIKFC (17) for particular nat/n values (a), division into atypical (grey crosses) and typical (black circles) elements for the
optimal value n∗

at/n = 0.042 (b).

(a) (b)

Fig. 10. Results for the joint distribution of suicides of women aged 35–54 (per one million inhabitants—horizontal axis) and GDP
(in 1,000 USD per person—vertical axis): values of the quality index QIKFC (17) for particular nat/n values (a), division into
atypical (grey crosses) and typical (black circles) elements for the optimal value n∗

at/n = 0.050 (b).
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(a)

(b) (c)
Fig. 11. Results for the joint distribution of radius (in relation to the Earth’s radius—horizontal axis) and mass (in relation to the

Earth’s mass—vertical axis) for exoplanets: values of the quality index QIKFC (17) for particular nat/n values (a), division
into atypical (grey crosses) and typical (black circles) elements for the global optimal value n∗

at/n = 0.300 (b), division into
atypical (grey crosses) and typical (black circles) elements for the local optimal value n∗

at/n = 0.094 (c) (note that circles
symbolizing typical elements merge together in dense areas).

i.e., Belarus, Estonia, Latvia, and Lithuania, where the
economic reality clashes with the culturally conditioned
responsibility of men for the material status of the family.
Finally, group C contains intermediate cases (Finland,
Lithuania, Luxemburg, Slovenia) and B those on the
borders of the typical element sets (Luxemburg, Norway,
Slovakia, Italy). The indications of the quality index
QIKFC (17) allowed a clear partition into atypical and
typical elements.

The results revealed in Fig. 8 can be additionally
modified by optimizing the quality index QIKFC (17) with
respect to the parameters of the procedure of atypical
element detection. In the case being considered, this role
is played by the smoothing parameter h of the kernel
estimator introduced in the formula (4). Figure 9 shows
the result for the parameter h obtained with the classic
mean-square criterion with both coordinates multiplied by
7.1, which constitutes the optimal value for the quality
index QIKFC (17). Visible are the sharpened results of the
division into atypical and typical elements—only groups
A (excluding Iceland) and C (no change) remain, making

the interpretation much more distinct. The number of
indicated atypical elements decreased to 39.

Out of scientific curiosity, let us consider the joint
distribution of the number of suicides and the GDP
income in the case of women. The equivalent of Fig. 8 is
now Fig. 10. Above all, one should note the changed scale
of the horizontal axis, representing the number of suicides,
being five-times smaller for women (Fig. 10) than for men
(Fig. 8). The minimum of the function QIKFC occurs
for n∗

at/n = 0.050. Then, 47 elements were indicated
as atypical. Group A, containing wealthy countries,
is similar to the case of men (Denmark, Luxemburg,
Norway, Switzerland). Group D, including the poorest
states, does not practically exist—the elements potentially
belonging here (in the bottom-right corner, corresponding
to Lithuania) become part of the general noise, previously
represented by groups B and C.

After the dark subject of suicides, let us illustrate the
different operation aspect of the quality index QIKFC (17)
in regard to exoplanets, i.e., the planets orbiting around a
star or stars other than the Sun (Caltech, 2024). The size of
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this set is n = 1, 138. The attributes are the logarithms of
the radius (in units of the Earth’s radius—horizontal axis)
and mass (in units of the Earth’s mass—vertical axis),
after adding 1 to both of the arguments, i.e., x 	→ log(x+
1) in units related to the Earth. The left panel of Fig.
11 shows the value of the index QIKFC (17) as a function
of nat/n. Its minimum on the interval [0.01, 0.3] occurs
on the right border 0.3, so the situation requires special
consideration. In fact, the number of atypical elements is
in consequence significant and amounts to 341 with 797
typical. The partition into atypical and typical elements,
presented in Panel (b) of Fig. 11, does not seem to be
fully justified. In such a case, one should pay attention
to the local minimum appearing for n∗

at/n = 0.094; the
obtained division is shown in Panel (c) of Fig. 11. It is
more distinct, and suitable for convenient interpretation.

6. Additional comments and summary
This paper presented the concept of a quality index
enabling the judgement of the results of atypical element
detection in an analyzed set, especially rare elements
in the frequency approach (for which this method is
particularly predisposed) as well as outliers in the distance
approach and other concepts. In consequence, the subject
of evaluation constitutes the quality of division of the
set under investigation into atypical and typical elements.
Notably convenient for interpretation are the indications
being obtained in the case of the existence of noise
superimposed on the conglomeration of typical elements.
It may be any shape, especially incoherent (consisting of
isolated components).

Thanks to having the possibility to evaluate the
results of any procedure of atypical element detection,
this method also allows the optimization of the values
of parameters or other quantities occurring in such
a procedure. In the presented material, this aspect was
applied to the natural frequency algorithm based on the
probability of appearance (Kulczycki and Kruszewski,
2017). The subject of the optimization was the quantity
n∗
at/n characterizing the share of elements recognized as

atypical with respect to the size of the set being analyzed,
in the range of [0.01, 0.3]. In the case when the global
minimum of the quality index occurs on the borders of this
interval, individual analysis is recommended, especially
with the consideration of local minima of the quality
index. Positive effects can also be obtained by optimizing
the values of the parameters or other quantities existing
in the procedure used (e.g., the smoothing parameter h of
the kernel estimator in the presented example).

The index is intended for one- and multi-dimensional
data, in particular with continuous attributes, although the
presented concept may be easily generalized with any
attribute types for which the construction of the kernel
estimator is possible, i.e., apart from continuous also

categorical, discrete, and their combinations. Convenient
interpretability of the proposed method can be facilitated
by the primary application of the reduction of size
(Wasserman, 2004) and dimensionality (Sorzano et al.,
2014) algorithms. In practice, it can also be beneficial to
employ the conditional density, making the model of the
studied reality more precise by adding the current value
of the conditional factor (Kulczycki and Franus, 2021).
These aspects will be the subjects of further detailed
research.
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