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Recent studies show that deep neural networks (DNNs) are extremely vulnerable to elaborately designed adversarial exam-
ples. Adversarial training, which uses adversarial examples as training data, has been proven to be one of the most effective
methods of defense against adversarial attacks. However, most existing adversarial training methods use adversarial exam-
ples relying on first-order gradients, which perform poorly against second-order adversarial attacks and make it difficult
to further improve the robustness of the model. In contrast to first-order gradients, second-order gradients provide a more
accurate approximation of the loss landscape relative to natural examples. Therefore, our work focuses on constructing
second-order adversarial examples and utilizing them for training DNNs. However, second-order optimization involves
computing the Hessian inverse, which typically consumes considerable time. To address this issue, we propose an approx-
imation method that transforms the problem into optimization within the Krylov subspace. Compared with the Euclidean
space, the Krylov subspace method typically does not require storing the entire matrix. It only needs to store vectors and
intermediate results, avoiding explicitly calculating the complete Hessian matrix. We approximate the adversarial direction
by a linear combination of Hessian-vector products in the Krylov subspace to reduce the computation cost. Because of the
non-symmetrical Hessian matrix, we use the generalized minimum residual to search for an approximate polynomial solu-
tion of the matrix. Our method efficiently reduces computational complexity and accelerates the training process. Extensive
experiments conducted on the MNIST, CIFAR-10, and ImageNet-100 datasets demonstrate that our adversarial learning us-
ing second-order adversarial samples outperforms other first-order methods, leading to improved model robustness against
various attacks.

Keywords: adversarial examples, adversarial machine learning, Krylov subspace, deep neural networks.

1. Introduction

Deep neural networks (DNNs) have been successfully
applied in many image-related tasks, such as image
classification (Ding et al., 2022), target detection (Long
et al., 2023), and super-resolution (Yin et al., 2023).
However, DNNs’ vulnerability to adversarial exam-
ples has drawn significant attention in the computer
vision community (Szegedy et al., 2013; Goodfellow

*Corresponding author

et al., 2015). In general, an adversarial example is an
image added by an imperceptible perturbation, which can
successfully fool a classifier. The existence of adversarial
examples will lead to disastrous consequences, especially
in safety-sensitive scenarios, such as industrial process
control (Pozdnyakov et al., 2024), face recognition (Yang
et al., 2023), and automatic drive systems (Lu et al.,
2024). Numerous countermeasures are proposed to
improve DNNs’ robustness against adversarial examples
(Huang et al., 2023; Athalye et al., 2018; Tejankar
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et al., 2023), among which adversarial training is
considered one of the most effective methods (Athalye
et al., 2018). Adversarial training as essentially data
augmentation with various adversarial examples (Li et al.,
2022; Wang and Wang, 2022; Liu et al., 2023) to
train a DNN. Madry et al. (2017) first formulated
adversarial training as a saddle-point problem, where
the inner maximization corresponds to the generation
of adversarial examples while the outer minimization is
supposed to achieve robust network parameters. However,
the effectiveness of adversarial training depends on the
intensity of adversarial examples corresponding to the
inner-maximization problem. In this paper, we hope to
generate stronger adversarial examples to improve the
effectiveness of adversarial training, i.e, optimization for
inner maximization.

In practice, achieving internal maximization of
adversarial training necessitates multiple iterations
to search for more potent perturbations. To date,
first-order projected gradient descent (PGD) adversarial
attacks, introduced by Madry et al. (2017), remain a
prominent approach for generating adversarial examples.
However, it hinders the development of significantly
improved attack strategies. Models trained using
first-order adversarial examples face difficulties in
enhancing robustness against more sophisticated attacks
as first-order gradients often lack a comprehensive
and global perspective of the optimization landscape.
To address the quest for more potent adversarial
examples, attention has shifted towards second-order
gradients. Unlike first-order gradients, methods
leveraging second-order gradients offer additional
insights, including the trends of first-order gradients,
facilitating the generation of stronger adversarial
examples (Tsiligkaridis and Roberts, 2020). Hence, the
model trained with stronger adversarial examples can
achieve more adversarial robustness.

Though several second-order optimization methods
were proposed for adversarial robustness (Jin et al.,
2022; Bertolace et al., 2024), they did not consider
crafting adversarial examples for adversarial training and
consume a significant amount of computing resources
and time. We propose a novel approach to craft
adversarial examples with second-order optimization,
named SOAEs (second-order adversarial examples), for
adversarial training. Our SOAE method constructs a new
perturbation direction based on the second-order gradient
information of the loss function in the Krylov subspace
(Yeom and Reddy, 2001; Shimonishi et al., 2002; Jea
and Young, 1980). Specifically, we use the inverse of
the Hessian to determine the adversarial direction, i.e.,
the direction of maximizing a loss function. However,
directly determining the inverse of the Hessian of a

loss function with respect to an image (in general,
with high resolution) scales quadratically for storage
and cubically for the number of operations. It is
computationally expensive to handle the inverse Hessian
matrix directly. Then we find, compared to the Euclidean
space, that the Krylov subspace methods typically do
not require storing the entire matrix; they only need to
store vectors and intermediate results, avoiding explicitly
calculating the complete Hessian matrix. Thus, to address
the issue of computational complexity in second-order
optimization, we approximate adversarial direction by
a liner combination of Hessian-vector products in
the Krylov subspace to reduce the computation cost.
Because of the nonsymmetrical Hessian matrix, we
use the generalized minimum residual to search for
an approximate polynomial solution of the matrix
polynomial approximation. In addition, optimization
conducted in the Krylov subspace can achieve a more
accurate approximation. We test the SOAE’s effectiveness
on different models trained by various adversarial training
techniques. Meanwhile, we use SOAEs to train several
models and evaluate their robustness against various
adversarial attack methods. Extensive experimental
results demonstrate that adversarial training with SOAEs
yields state-of-the-art performance. Finally, we provide a
deep insight into the effectiveness of our method from the
theoretical perspective of computational complexity and
attack-strength bound.

Our contribution is summarized as follows.

• We propose a second-order gradient-based method
to generate more powerful adversarial examples.
Adversarial training through these adversarial
examples enhances the models with higher
robustness than those training with first-order
adversarial examples.

• We address the problem of the inverse Hessian
matrix occurring in second-order gradients
by transforming it into optimization in the
Krylov subspace, which remarkably reduces
the computational complexity.

• We theoretically prove the superiority of our method
over the project gradient descent (PGD). Extensive
experiments conducted on MNIST and CIFAR-10
also show that our second-order method outperforms
other approaches, including the state-of-the-art
AutoAttack.

The paper is organized as follows. In Section 2, we
provide an update on the progress of the related work. In
Section 3, we provide pre-requisite knowledge before the
introduction of our methodology. Then, our method is
presented in Section 4 and an experimental proof is given
in Section 5. Finally, we summarize our work in Section 6.
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List of acronyms.

DNN: deep neural network
PGD: projected gradient descent
SOAE: second-order adversarial examples
SOAR: second-order adversarial regularizer
APGD: auto projected gradient descent
FAB: fast adaptive boundary
FGSM: fast gradient signed method
ERM: empirical risk minimization
GMRES: generalized minimum residual
FC: fully connected
SOAT: second-order adversarial training
STD: standard training
PSNR: peak signal noise ratio
SSIM: structural similarity
MSE: mean square error

2. Related work

To react to the threat of adversarial examples against
DNNs, researchers have developed numerous defense
mechanisms. Generally, adversarial defense can be
categorized into three directions: model optimization,
data manipulation, and auxiliary networks. Model
optimization involves adjusting the parameters within
the model, including defensive distillation (Badjie et al.,
2023), gradient regularization (Li and Spratling, 2023),
and others. Data manipulation entails fine-tuning the
input data, such as adversarial training (Madry et al.,
2017), image compression (Song et al., 2024), and similar
techniques. Auxiliary networks involve augmenting
the trained model with an additional network, such as
adversarial example detectors (Guo et al., 2023). Among
them, adversarial training is considered one of the most
effective methods. However, in most existing adversarial
training methods, that of generating adversarial samples
relies on a first-order gradient. Although the first-order
gradient optimization problem has high computational
efficiency, it is weak in the face of second-order
adversarial attacks (Zhang et al., 2023; Wu et al., 2024).

Recently, there have been several second-order
optimization methods applied to adversarial robustness.
Li et al. (2018) proposed an attack method based on an
approximated second-order derivative of the loss function
and showed it can effectively reduce the accuracy of
adversarially trained models. However, there was still a
noticeable gap between theoretical analysis and empirical
results. Tsiligkaridis and Roberts (2020) revealed that
adversarial attack based on second-order approximation
of the loss is more effective in models with regular
landscapes and decision boundaries. Ma et al. (2020)
further studied the upper bound and proposed the SOAR,

a second-order adversarial regularizer based on the Taylor
approximation of the inner maximization in the robust
optimization objective. They showed that SOAR training
significantly improves adversarial robustness under L∞
and L2 attacks. However, they also found its vulnerability
to AutoAttack. A possible explanation is that the SOAR
overfits a specific type of attack, i.e., loss function
dependent. In order to avoid the overfitting of the
model, the generalization ability of the model is improved.
Jin et al. (2023) performed Taylor expansion of the
loss function on random weights, optimized the zeroth,
first-order and second-order expansions at the same time,
and proposed adversarial training under the randomized
model.

Recently, Croce and Hein (2020b) proposed a
reliable and stable attack method called AutoAttack,
which is an automatic parameter-free method integrating
four attack methods: i.e., three white-box attacks:
an Auto-PGD (APGD) (Croce and Hein, 2020b)
with cross-entropy loss, targeted APGD with
difference-of-logits-ratio loss, targeted fast adaptive
boundary (FAB) attack (Croce and Hein, 2020a), and a
black-box attack named SquareAttack (Andriushchenko
et al., 2020). However, the methods mentioned above
are all based on first-order gradient information. The
fast gradient signed method (FGSM), lacks accuracy
due to its one-shot operation. Though the PGD
fixes this issue through k iterations, it undoubtedly
prolongs the convergence time. The same situation
occurs in AutoAttack since it uses the combination of
several variants of the PGD and other types of attacks.
Besides, those first-order methods have some natural
defects in approximating the loss landscape around the
neighborhood of the input images.

The limited application of the second-order methods
in adversarial robustness is mainly due to high
computation cost and large storage consumption of the
Hessian-related problem in the optimization process. In
order to avoid the high computational cost of Hessian
matrices, Ge et al. (2023) adopt a first-order procedure
to approximate the curvature of the second-order Hessian
matrix, which makes computing more efficient by
interpolating two Jacobian matrices. Zhao et al.
(2024) used differential approximation to approximate the
Hessian-vector product low-curvature integrated defense
model. In addition to the method of approximating the
Hessian matrix, a new second-order optimizer named
Shampoo was proposed by Anil et al. (2020). With the
efficiently utilized heterogeneous hardware architecture
consisting of multi-core CPUs and multi-accelerator units,
it outperformed the state-of-the-art first-order gradient
descent methods in the field of image classification,
large-scale machine translation, etc. The success of
Shampoo undoubtedly reveals the potential for the
development of the second-order method in deep learning
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tasks. This encourages us to explore more possibilities of
its application in adversarial robustness.

3. Background
A clean example-label pair (x, y) ∼ D is extracted
from an underlying data distribution D in the standard
classification task. The classifier fθ(·) with parameters θ
turns x into logits, namely, the unnormalized probability
values. The logits are normalized after a softmax layer
and become a probability score. The softmax layer can be
represented as a function pk(x) = efθ,k(x)/

∑
l e

fθ,l(x).
Thus, the predicted class label is obtained by ŷk(x) =
argmaxkfθ,k(x). A standard training procedure is the
empirical risk minimization (ERM) (Zhang, 2016). For
the loss function L(x, y, θ), the goal of standard training
is

min
θ

E(x,y)∼D[L(x, y, θ)]. (1)

Training the classifier through the ERM principle
guarantees a high accuracy on test sets but leads to
an unavoidable vulnerability against adversarial attacks
(Madry et al., 2017). To measure the immunity
of a classifier fθ(·) against perturbations, adversarial
robustness is defined with respect to a metric. In practice,
the most used metric is an Lp-norm (p = 1, 2, or
∞), combined with an Lp-ball Bp(ε) = {δ|‖δ‖p ≤
ε}. An adversarial example xadv is obtained by adding
perturbation δ to the original example x, where the upper
bound of δ is ε. Practically, there are many adversarial
example generation algorithms proposed to find xadv =
x+δ such that δ is very small but the model misclassifies
xadv to class label ŷ �= y. Here y is the ground-truth
label of x. A classifier is evaluated as robust to adversarial
perturbation size ε if the label of the given input example
x does not change for all perturbations of size up to ε, i.e.,
fθ(x) = fθ(x

adv) = fθ(x+ δ), where δ ∈ Bp(ε). In this
scenario, ε is often called a perturbation budget.

There are many algorithms to generate adversarial
examples. Goodfellow et al. (2015) first proposed an
FGSM that multiplies the sign of the loss gradient with
respect to the inputs to obtain the perturbation, i.e.,
xadv = x + αsign∇L(x, θ). Madry et al. (2017) further
developed this single-iteration FGSM into a k-iteration
method PGD with a projection step to restrict the size of
perturbation, i.e., x(t+1) = Π(x(t) + αsign∇L(x, θ)).

4. Methodology
4.1. Second-order perturbation. For a classifier fθ(·)
and an input x with label y, our purpose is to find a small
perturbation δ that leads to a misclassification of fθ(·),
i.e.,

fθ(x+ δ) = ŷ (2a)

subject to
y �= ŷ ∧ δ ∈ Bp(ε). (2b)

Specifically, our goal is to maximize the loss function
L(x+ δ, y). Almost all the methods utilize the first-order
gradient direction, i.e., ∂L/∂x, to increase the loss
function. However, we think the second-order gradient
includes more global information for obtaining more
powerful adversarial examples. For a clean example x,
the Taylor expansion of the loss function of its perturbated
example xadv = x+ δ can be written as

L(xadv) ≈ Q(δ)

= L(x) +∇L(x)Tδ +
1

2
δT∇2L(x)δ,

(3)

where the higher-order terms are omitted. This loss
function is a quadratic function Q(δ) of perturbation δ.
Since we want the loss to increase as much as possible
in each iteration, the final optimal perturbation can be
presented by

δ∗ = arg max
δ∈Bp(ε)

Q(δ). (4)

We set the derivative of Q(δ) with respect to δ to
zero and then obtain a feasible optimization direction at
the t-th iteration:

δ(t) =
[
∇2L(x+ δ(t−1))

]−1

∇L(x+ δ(t−1)). (5)

For notational simplicity let H = ∇2L(·) and g = ∇L(·);
then δ(t) = H−1g. To limit the perturbation size, a
step-size factor α is adopted. If the final perturbation is
out of the limitation of the given Lp-ball, referring to the
method in PGD, the final form of the generated adversarial
example yields

xadv = Π(x+ αH−1g), (6)

where Π(·) is a projection operator.

4.2. Approximating H−1g. Calculating the Hessian
matrix scales quadratically for storage and cubically for
the number of operations, so that obtaining its inverse in
(6) is nontrivial. This motivates why we introduce below
approximating H−1g in (6) by a linear combination of
Hessian-vector products in the Krylov subspace, which
yields a computationally feasible and efficient gradient
approximation:

δ(t) = H−1g ≈
m−1∑

i=0

βiH
ig

= β0g+ β1Hg + β2H
2g+ · · ·

+ βm−1H
m−1g,

(7)
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where βi are coefficients and m is a hyperparameter
(m� dimH). Here, an m-dimensional Krylov subspace
K(H,g) � span{g,Hg, . . . ,Hm−1g} is employed.

The Krylov subspace method has an important
feature, i.e., at each iteration it yields only one matrix and
a low number of vector operations. By pre-multiplying
the matrix H, we can get larger eigenvectors in matrix H.
The eigenvectors are used to find the possible subspace
building feasible optimization and approximating H−1g
during iterations.

We apply the generalized minimum residual
(GMRES) (Jea and Young, 1980) to deal with Eqn. (7),
which is one of the most effective orthogonalization
methods in the Krylov subspace. In an m-dimensional
Krylov subspaceK(H,g), there exists a δ̃ ∈ δ(0) +K for
a minimal residual, where δ(0) is a randomly initialized
perturbation. Hence, (7) is transformed into the following
optimization to approximate δ(t) = H−1g:

δ(t) = arg min
δ̃∈δ(0)+K

∥
∥g−Hδ̃

∥
∥
2

(8a)

subject to
(g −Hδ̃)⊥HK, (8b)

where
∥
∥g−Hδ̃

∥
∥
2

is the residual in affine space δ(0)+K,
and HK is a constraint space. However, directly solving
this optimization is nontrivial. For any δ̃ ∈ δ(0) + Km,
there exists γ ∈ R

m such that δ̃ = δ(0) + Vmγ, where
Vm is an m-dimensional unitary matrix (Shimonishi
et al., 2002). Then we further transform (8a) into an
equivalent optimization problem. Let

g −Hδ̃ = g−H(δ(0) +Vmγ)

= r0 −HVmγ

= βv1 −Vm+1Dm+1,mγ

= Vm+1(βe1 −Dm+1,mγ),

(9)

where r0 = g − Hδ(0), vi is the i-th column vector of
Vm, Dm+1,m = [dij ]m+1×m, with dij = (vi,Hvi), and
e1 = [1, 0, . . . , 0]

T ∈ R
m+1. Since the column vectors of

the unitary matrix Vm+1 are orthonormal, we have

‖g −Hδ‖2 = ‖Vm+1(βe1 −Dm+1,mγ)‖2
= ‖βe1 −Dm+1,mγ‖2.

(10)

Hence, the problem (8a) is turned into the following
optimization:

δ̃ = δ(0) +Vmγ∗

γ∗ = arg min
γ∈Rm

‖βe1 −Dm+1,mγ‖2. (11)

Since m is sufficiently small in our work, we can
further use the QR-decomposition method to solve this
least-squares problem. Let Dm+1,m = QT

m+1Rm+1,m

be the QR decomposition of Dm+1,m, where QT
m+1 ∈

R
(m+1)×(m+1) is an orthogonal matrix and Rm+1,m ∈

R
(m+1)×m is an upper triangular matrix. Then we have

‖βe1 −Dm+1,mγ‖2 =
∥
∥βe1 −QT

m+1Rm+1,mγ
∥
∥
2

= ‖βQm+1e1 −Rm+1,mγ‖2
=

∥
∥
∥
∥βq1 −

[
Rm

0

]

γ

∥
∥
∥
∥
2

,

(12)

where q1 is the first column of Qm+1 and Rm represents
the first m rows of Rm+1,m. Then, γ can be solved by the
upper triangular equations:

Rmγ = βq1(1 : m), (13)

where q1(1 : m) represents the vector consisting of
the first m elements of q1. Through solving these
m-dimensional upper trangular equations by Numpy,
the optimal γ∗ is obtained. Substituting γ∗ back into
Eqn. (11), we finally obtain the optimal perturbation δ∗.

In practice, the QR decomposition of Dj+1,j in
Eqn. (12) can be implemented by the recursive Givens
transformation method (Thornton and Bierman, 1977),
i.e., obtain the QR decomposition of Dj+1,j through a
Givens transformation based on the QR decomposition of
Dj−1,j . The QR decomposition of Dj,j−1 ∈ R

j×(j−1) is
presented as

Dj,j−1 = (Gj−1Gj−2 . . .G1)
TRj,j−1

= QT
j

[
Rj−1

0

]

j×(j−1)

,
(14)

where Rj−1 ∈ R
(j+1)×(j−1) is an upper triangular matrix

and Gi represents the Givens transformation. To ensure
the consistency of the matrix product, we suppose that the
dimension of Gi will automatically increase according to
our calculation requirement, i.e., expanding Gi by adding
the identity matrix to the lower right corner. Briefly,
we can obtain the last column of Rj by applying the
Givens transformationG1,G2, . . . ,Gj to the last column
of Dj+1,j , respectively.

4.3. Second-order adversarial examples. We
illustrate the entire procedure of generating our
second-order adversarial example (SOAE) in Algorithm 1.
Our goal is to construct a second-order adversarial
perturbation δ∗ = H−1g and output the final adversarial
example xadv = x + αδ∗, which is implemented by
multi-iterations to approximate δ∗ in our algorithm.
To perform better, the step size is divided into
α/N in each iteration, where N is the number of
iterations. If the calculated perturbation is larger than
the perturbation budget ε, we apply a projection step like
PGD (Madry et al., 2017). To avoid directly computing
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Algorithm 1. Second-order adversarial example (SOAE).
Input: Original image x, difference step-size η > 0 and
τ > 0.
Output: xadv = xN

1: for n = 1, 2, · · · , N do
2: g← ∇L(xn), δ

(0) ← g
3: Hg← (∇L(xn + ηg)−∇L(xn)) /η

4: r0 ← δ(0) −Hg, β ← ‖r0‖2,v1 ← r0/β
5: for j = 1, 2, . . . do
6: wj ← Hvj

7: for i = 1 to j do
8: hij ← (wj ,vi)
9: wj ← wj − hijvi

10: end for
11: hj+1,j ← ‖wj‖2,vj+1 ← wj/hj+1,j

12: if ‖r̃‖2/β < τ then
13: m← j, break
14: end if
15: end for
16: Obtain γ∗ by solving Rmγ∗ = βq1(1 : m)

17: δ̃ ← δ(0) +Vmγ∗

18: xn+1 ← Clip{xn + α
N δ̃}

19: end for

the Hessian matrix, we apply a difference approximation
Hg = (∇L(x + ηg) − ∇L(x))/η in Step 3, which
is proved to be an accurate approximation to the
Hessian-vector product (Tsiligkaridis and Roberts, 2020).
Moreover, it has been proved that the gradient direction is
well aligned with the direction of the maximum curvature
of models (Jetly et al., 2018; Fawzi et al., 2018), which
makes δ(0) ← g a strong initialization for our algorithm.
The inner loop of our algorithm (Steps 5 to 15) is
the Hessian inverse approximation, which controls the
dimension of the Krylov subspace through a threshold
τ . In practice, the dimension m can be compressed
to a sufficiently small size, that is 1/20 of the original
Hessian dimension, which retains the approximation
accuracy while significantly reducing the computation
cost. Our algorithm involves two hyperparameters: (i)
the difference step-size η to control the accuracy of the
difference approximation and (ii) the approximation
threshold τ to determine the approximating precision of
the inverse Hessian matrix.

4.4. Theoretical analysis on attack strength. Recall
in Eqn. (3) that we consider the loss function L(x + δ)
as a quadratic function Q(δ) with respect to our
second-order perturbation δ and the final perturbation is
obtained through the following optimization:

Q(δ) = L(x) +∇L(x)T δ +
1

2
δT∇2L(x)δ,

δ∗ = arg max
δ∈Bp(ε)

Q(δ). (15)

Note that in the construction of our second-order
perturbation δ∗ we use a quadratic function Q(δ) instead
of maximizing the original loss L(x + δ). Assume that
there exists an optimal attack δ̂ which directly comes from
maximizing L̂ = L(x+ δ̂). In such cases,

L̂−Q = L(x+ δ̂)− L(x)

− (L(x+ δ∗)− L(x))

= Q(δ̂)−Q(δ∗) + o(x3),

(16)

where δ̂ and δ∗ represent the “optimal” perturbation and
our second-order perturbation respectively, and o(x3) is
the third-order Taylor polynomial. Hence,

Q(δ̂)−Q(δ∗) = gT δ̂ +
1

2
δ̂
T
Hδ̂

− (gT δ∗ +
1

2
δ∗THδ∗)

= (δ̂ − δ∗,g)

+ (δ̂ − δ∗,
1

2
H(δ̂ + δ∗)).

(17)

By applying the Hölder inequality to the last term of
Eqn. (17), we get

|(δ̂ − δ∗,
1

2
H(δ̂ + δ∗))| ≤ 1

2
‖δ̂ − δ∗‖p
× (‖Hδ̂‖q + ‖Hδ∗‖q)
≤ ε2 ‖H‖p,q ,

(18)

where ε is a perturbation budget. Hence, the bound of real
adversarial loss and our second-order loss yields

|L̂−Q| ≤ 2ε ‖g‖q + 2ε2 ‖H‖p,q +
ε3M

3
, (19)

where M is the supremum-norm of all derivatives of
L(x) of order three. This inequality reveals that the
proximity of our second-order adversarial perturbation
to the optimal perturbation is controlled by the attack
strength and the network regularity. A greater regularity
of the network will result in a smaller gap between our
attack and the optimal attack. It has been experimentally
demonstrated that various robust methods, such as
adversarial training and geometric regularization models,
lead to a more regular loss landscape than their non-robust
counterparts (Lyu et al., 2015; Ros and Doshi-Velez,
2018; Moosavi-Dezfooli et al., 2019). Therefore, our
SOAE attack is effective in various adversarially trained
models, experimentally demonstrated in Section 5.

4.5. Time complexity analysis. For the convenience
of theoretical analysis, we take a three-layer fully
connected (FC) neural network as an example since the
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construction of adversarial examples contains multiple
forward and backward propagations. Our FC network
contains l1, l2, and l3 neurons in the input, hidden, and
output layers, respectively, where l2 > l1 and l2 > l3.
With one original image resized to (l1, 1), the forward
propagation requires two multiplications of the weight
matrix and the activation vector, that is, l1 × l2 + l2 ×
l3 operations. Its time complexity is O(l1l2 + l2l3).
Similarly, the time complexity of back-propagation is
O(l1l2 + l2l3) as well. Hence, the gradient calculation
for the SOAE’s initialization has O(l22) time complexity.

Our calculated gradient g has the same dimension as
the input, i.e., dimg = l1. Steps 3 and 4 only contain
the multiplication of numbers and l1-dimensional vectors.
Thus, their complexity isO(l1). Note that Step 6 does not
require Hessian H; instead, we have

Hv1 =
1

β
H(δ(0) −Hg) =

1

β
(Hg −HHg)

=
1

β

[
∇L(xn + ηg)−∇L(xn)

η

− ∇L(xn + ηHg)−∇L(xn)

η

]

,

(21)

where the Hessian-vector product Hg is approximated
through the finite difference:

Hg =
1

η
(∇L(xn + ηg)−∇L(xn)) , (22)

where the same finite difference can be applied to HHg
by considering it to be another Hessian-vector product, in
which case the corresponding vector is the product Hg,
i.e.,

H2g =
1

η
(∇L(xn + ηHg)−∇L(xn)) . (23)

Similarly, all wj = Hvj can be calculated through

wj = Hvj = H(Hvj−1) = · · ·
= H(H · · · (4(Hv1))). (24)

In j loops, where j is up to m, each calculation of wj

requires one forward and one backward propagation. Its
time complexity is O(ml22).

The i loop (Steps 7 to 10) only contains the inner
products of l1-dimensional vectors and number-vector
multiplications. The time complexity of one loop isO(l1).
Note that i is up to j, where j is up to m, and the total time
complexity of the i loop amounts to O(l1(1 + 2 + · · · +
m)) = O(m2l1).

After the j loop, there is an m-dimensional
upper triangular linear equation in Step 16 which
comes from the QR decomposition of Dm+1,m =
[dij ]m+1×m where dij = (vi,Hvi), referring to

Eqn. (9). The time complexity of the QR decomposition
of an m-dimensional matrix is O(m3) when applying
the Givens transformation (Thornton and Bierman,
1977). Solving the upper triangular equations in
Step 16 has O(m2) time complexity. The rest of the
operations followed by Step 16 are simple operations on
l1-dimensional vectors with O(l1) complexity.

Now we can give a formal estimate of our SOAE.
For a three-layer FC network with input size (l1, 1) and a
hidden layer with l2 neurons, the time complexity of the
SOAE is

O(l22 +ml22 +m2l1 +m2). (25)

Here, m is controlled by a threshold τ in Step 12, which
we will discuss in Section 5.3. In practice, m coincides
with input size l1, and a small m value is sufficient to
guarantee high performance. This theoretical analysis
reveals the SOAE’s effectiveness on small-scale datasets.
Even for large-scale images such as ImageNet, our
method still shows competitive performance in practical
experiments.

In addition, there is no extra storage requirement for
our algorithm since it is Hessian-free, which means the
batch size can be set as the same as other attack methods.
Such a design makes our method more competitive than
current second-order adversarial methods.

5. Experiment

In this section, extensive experiments are conducted to
evaluate the effectiveness of our SOAE and SOAT. We
train ResNet18 and WideResNet using various methods,
including standard training and adversarial training on
MNIST and CIFAR-10, and test them with multiple
attack methods. For large-scale image evaluation, we
use 100,000 samples of 100 classes from ImageNet to
construct our dataset. After the effectiveness evaluation,
we analyze the hyperparameters in our methods to find
the most proper values.

5.1. Experimental setup.

5.1.1. Datasets. MNIST contains 60,000 training
examples and 10,000 test examples of handwriting
numbers with the size of 28×28. CIFAR-10 contains
60,000 RGB images of 10 classes with the size of 32×32,
which are divided into a training set containing 50,000
examples and a test set containing 10,000 examples.
ILSVRC2012 is a subset of ImageNet containing 1.2
million 224×224 images of 1,000 classes, where we
randomly select 100,000 images of 100 classes to
construct our dataset ImageNet-100 for large-scale image
evaluation.



432 Y. Qian et al.

Table 1. Experimental results on MNIST. Here STD represents standard training with clean examples.
Models Training Clean FGSM PGD Auto ASOD SOAE

used methods examples attack attack attack attack attack

ResNet18

STD 97.78% 0.07% 0.06% 0.01% 0.01% 0.01%
PGD (Madry et al., 2017) 86.34% 63.40% 55.89% 49.10% 20.20% 30.85%
TRADES (Zhang et al., 2019) 85.98% 65.05% 53.87% 40.27% 39.76% 38.32%
SOAR (Ma et al., 2020) 87.95% 67.15% 56.06% 18.25% 29.12% 20.14%
STN (Li et al., 2018) 86.26% 66.77% 54.90% 29.81% 48.74% 25.25%
SCORPIO 87.92% 68.18% 58.44% 41.01% 47.62% 39.03%
(Tsiligkaridis and Roberts, 2020)
SOAT 87.62% 70.89% 60.13% 39.10% 49.45% 47.53%

WideResNet

STD 99.90% 0.08% 0.05% 0.01% 0.02% 0.01%
PGD (Madry et al., 2017) 84.55% 66.50% 57.12% 44.51% 21.76% 29.84%
TRADES (Zhang et al., 2019) 80.56% 68.32% 56.49% 42.79% 41.37% 32.15%
SOAR (Ma et al., 2020) 86.99% 68.64% 57.80% 19.13% 33.90% 27.60%
STN (Li et al., 2018) 87.42% 66.81% 53.21% 33.91% 46.25% 30.45%
SCORPIO 89.01% 67.43% 55.02% 39.88% 43.69% 38.24%
(Tsiligkaridis and Roberts, 2020)
SOAT 85.23% 69.98% 57.73% 45.22% 45.96% 43.47%

5.1.2. Adversarial attack. We use five different
methods to generate adversarial examples: (i) an FGSM
(Goodfellow et al., 2015) with the perturbation size ε =
8/255; (ii) a 20-iteration PGD (Madry et al., 2017)
with the step size 2/255 and the total perturbation size
ε = 8/255; (iii) AutoAttack (Croce and Hein, 2020b)
with L∞-norm and ε = 8/255; (iv) ASOD (Li et al.,
2018) with the total perturbation size ε = 8/255 (Since
their code is not open-source, we re-write its program
according to the implementation in the original paper to
reproduce the claimed performance.); and (v) our SOAE
with the total perturbation size ε = 8/255.

5.1.3. Adversarial training. We train ResNet18 and
WideResNet with two first-order adversarial training
methods: (i) a PGD with seven iterations and the step
size of 2/255, (ii) TRADES with the total perturbation
ε = 8/255 and the step size of 2/255; three second-order
adversarial training methods: (i) the SOAR proposed
by Ma et al. (2020), in which we follow the original
settings, (ii) the STN proposed by (Li et al., 2018) trained
with ASOD, (iii) the SCORPIO regularizer proposed by
Tsiligkaridis and Roberts (2020), and (iv) our method
SOAT. All training phases have 300 epochs with a batch
size of 128. We use SGD with a momentum of 0.9,
where the initial learning rate is 0.1 with a weight decay
of 0.0003.

5.2. Main results.

5.2.1. Results on MNIST. The results in Table 1
illustrate the effectiveness of our methods. Compared

with the first-order adversarial attacks, our SOAE
decreases the models’ accuracy remarkably, though
these models are adversarially trained. Compared
with the second-order ASOD attack, our SOAE attack
still achieves an equivalent or larger accuracy drop.
Nevertheless, ASOD (Li et al., 2018) is merely effective
in compromising PGD adversarial training; our SOAE can
disrupt a wide range of adversarial training techniques.
On the other hand, if the model is adversarially
trained with SOAEs, named second-order adversarial
training (SOAT), this can significantly improve the
network robustness, particularly resistant to second-order
adversarial attacks. Even under the strongest AutoAttack,
SOAT still shows state-of-the-art performance.

5.2.2. Results on CIFAR-10. We also test our
method on the CIFAR-10 dataset. Experimental results
illustrate the efficiency of our method as well. Our
attack (SOAE) and defense methods (SOAT) achieve
state-of-the-art performance. Except for AutoAttack
on the SOAR-trained models (it is claimed by Ma
et al. (2020) that their method is highly vulnerable to
AutoAttack), our SOAE outperforms all the other attacks.
On the other hand, the models trained by SOAT still
guarantee high robustness against various adversarial
attacks. It even achieves the highest accuracy on two
trained models under AutoAttack.

5.2.3. Results on ImageNet-100. We test our
algorithm on our large-scale image dataset ImageNet-100.
As analyzed in the previous section, the SOAE’s speed
is related to the input size. Large-scale images may
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Table 2. Experimental results on CIFAR-10. Here STD represents standard training with clean examples.
Models Training Clean FGSM PGD Auto ASOD SOAE

used methods examples attack attack attack attack attack

ResNet18

STD 92.54% 30.59% 0.14% 0.05% 0.12% 0.08%
PGD (Madry et al., 2017) 80.64% 50.96% 42.86% 40.59% 40.32% 38.19%
TRADES (Zhang et al., 2019) 85.61% 53.06% 45.38% 41.34% 43.49% 40.26%
SOAR (Ma et al., 2020) 87.95% 55.70% 56.06% 19.66% 45.08% 35.45%
STN (Li et al., 2018) 83.03% 54.83% 52.34% 38.00% 48.15% 37.98%
SCORPIO 86.58% 55.07% 49.56% 39.27% 46.82% 38.75%
(Tsiligkaridis and Roberts, 2020)
SOAT 85.47% 56.24% 54.72% 45.98% 47.73% 49.27%

WideResNet

STD 93.79% 44.77% 0.03% 0.01% 0.13% 0.09%
PGD (Madry et al., 2017) 81.83% 51.15% 43.66% 42.62% 41.86% 39.14%
TRADES (Zhang et al., 2019) 86.54% 54.66% 45.70% 43.70% 44.22% 41.21%
SOAR (Ma et al., 2020) 88.02% 67.15% 57.92% 20.41% 47.31% 39.35%
STN (Li et al., 2018) 84.11% 58.59% 53.16% 38.95% 49.27% 38.02%
SCORPIO 86.99% 61.37% 50.50% 41.28% 47.33% 40.11%
(Tsiligkaridis and Roberts, 2020)
SOAT 86.38% 62.33% 57.67% 47.53% 50.50% 51.46%

Table 3. Experimental results of ResNet18 on ImageNet-100.
Training Clean PGD Auto SOAE
methods examples attack attack attack
STD 91.33% 0.02% 0 0
PGD 78.26% 55.37% 48.66% 40.31%
TRADES 82.91% 56.09% 47.25% 40.05%
SOAR 80.80% 61.68% 45.12% 42.35%
SOAT 84.50% 62.84% 52.99% 47.90%

theoretically increase the SOAE’s convergence time. This
effect is not apparent on MNIST and CIFAR-10 since
the approximation dimension m is small when dealing
with 28×28 and 32×32 images (m = 15 will be
enough, as shown in Section 5.3). However, when
encountering 224×224 images, the required m value
unavoidably increases to more than 100. This situation
makes m’s effect significant in Eqn. (25). However,
additional running time is proved to be worthy, according
to experimental results. Our SOAE attack outperforms
other attack methods in all situations. It successfully
improves accuracy by 8% compared with AutoAttack on
a PGD-training model. Its performances on four different
adversarial training models are better than other attack
methods. Training with the SOAE also yields satisfying
results, where our SOAT model has the highest accuracy
under all three attacks.

5.3. Hyperparameter analysis. In this subsection, we
mainly discuss three hyperparameters in our method: the
difference step-size η, the approximation threshold τ , and
the iteration time N .

5.3.1. Difference step-size η. Recall that in Step 3 of
Algorithm 1 we use a first-order difference of gradients to
approximate the Hessian-vector product, and the step-size
η controls the accuracy of this approximation. We
evaluate how different η values influence the performance
of our algorithm. Specifically, we generate adversarial
examples on MNIST with different η values, and use them
to test the accuracy of the standard-trained, PGD-trained,
and SOAT-trained ResNet18 models, as shown in Fig. 1.
Our SOAE attack achieves the best performance as η
is less than 10−5. But if η is larger than 10−4, it
brings obvious ineffectiveness to our method. As η
increases to 10−2, most perturbed examples generated
by our algorithm are actually not adversarial examples.
This means that a large η will cause an extremely poor
approximation to the Hessian-vector product and lead the
subsequent step of the algorithm to complete blindness.
In conclusion, the proper η value should be no more than
10−5.

5.3.2. Approximation threshold τ . This hyper-
parameter controls the approximating precision of the
inverse Hessian matrix. Intuitively, a smaller τ leads to
a more accurate approximation. However, too small τ
will significantly increase the convergence time. As is
analyzed in the previous section, the τ value determines
the approximation dimension m, which significantly
influences our algorithm’s running time. We use a
series of τ values to generate 1,000 adversarial examples
on CIFAR-10 and attack the standard-trained ResNet18
model. The accuracy change and the convergence time are
shown in Fig. 3. When τ < 10−3, our SOAE can perform
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Table 4. PSNR and SSIM of different adversarial examples.
Method Dataset PSNR SSIM Dataset PSNR SSIM Dataset PSNR SSIM
FGSM

MNIST

74.23 0.86

CIFAR-10

74.70 0.86

ImageNet-100

75.89 0.87
PGD 72.30 0.83 74.11 0.84 78.41 0.86

AutoAttack 71.49 0.82 72.62 0.85 77.07 0.84
SOAE 76.08 0.87 79.53 0.86 81.66 0.89

Table 5. Approximation dimension m under different τ values.

Dataset τ value
10−5 10−4 10−3 10−2 10−1

MNIST(28×28) 152 71 43 26 17
CIFAR-10(32×32) 243 117 65 38 22

ImageNet(224×224) 2196 1324 746 327 221

Fig. 1. Accuracy change under different η values. STD, PGD,
and SOAT represent different training methods.

well, where the accuracy drops below 16%. We further
find that the accuracy barely changes from τ = 10−6 to
10−3; however, the convergence time drops significantly.
Therefore, we suggest that 10−4 ≤ τ ≤ 10−3 is proper
in practice. We also record the m values corresponding
to different τ values on different datasets, as shown in
Table 5.

5.3.3. Total number of iterations N . The total
number of iterations directly influences attack number
of success rates. But a large number of iterations will
lead to insufferable time consumption. To find proper
numbers of iterations to achieve a good trade-off between
attack success rates and computation costs, we run 20
iterations for our algorithm and the PGD, on ResNet18
and record the accuracy changes in every iteration in
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Fig. 2. Accuracy change for the ResNet18 model with the in-
creasing number of iterations N . We run the PGD and
the SOAE for 20 iterations and train the model with the
standard training and PGD.

Fig. 2. Compared with the PGD using 7 or 20 iterations to
converge, our method needs only less than four iterations,
yielding a competitive performance. This further proves
that our second-order method has a perfect convergence
property. One may argue that iterations cannot fully
measure computation costs. Although the time of a single
iteration is a little longer than that of other first-order
methods since our method contains a certain number of
linear combinations and small matrix multiplications, the
total time of generating SOAEs on the entire CIFAR-10
dataset is only one hour longer than that of AutoAttack on
an RTX3090 GPU. We believe that our method is practical
and it will be faster after further optimization.
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Fig. 3. Accuracy change for ResNet18 and convergence time
under different τ values. The convergence time is a mul-
tiple of the time when τ = 1.

5.4. Visualization. In this section, we visualize the
feature maps of a standard-trained ResNet18 model with
different input examples (clean, the FGSM, the PGD,
AutoAttack and the SOAE) on the ImageNet dataset,
as shown in Fig. 4. Compared with the first-order
methods, the adversarial perturbation of the SOAE is more
imperceptible to human eyes. Our SOAEs can deceive the
model at a relatively low feature distortion level. Besides,
we notice that most second-order perturbations occur on
the objective edge, where the pixel value has a more
rapid change than other image regions. This phenomenon
aligns well with the role of a second-order differential
operator in image processing, which has a stronger
ability to locate the edge information. This visualization
further implies the hidden relationship between the
adversarial robustness and the edge information of the
classification objective. According to Heaven (2019),
a disruption of low-level semantics, such as edge
information, can significantly weaken a CNN’s ability
to understand high-level semantics. This provides a
reasonable explanation for our method’s effectiveness.

To further demonstrate our second-order
perturbations’ imperceptibility, we use the peak
signal noise ratio (PSNR (cf. Faragallah et al., 2021))
and structural similarity (SSIM (cf. Nilsson and
Akenine-Möller, 2020)) to quantitatively measure
the similarity and distortion between original examples
and their corresponding adversarial examples. The
formulas for the PSNR and SSIM are as follows:

MSE =
1

mn

m−1∑

i=0

n−1∑

j=0

[I(i, j)−K(i, j)]2 ,

PSNR = 10 · log10
(MAX2

I

MSE

)
,

(20)

Fig. 4. Visualization of the feature map in different layers of
standard-trained ResNet18 with different input exam-
ples. The perturbation size of all attack methods is
8/255.

where MSE refers to the mean square error, m and n refer,
respectively, to the width and height of the image, I and
K refer to the clean and the noisy image, respectively, and
MAX is the maximum possible pixel value of the image.
If each pixel is represented by an 8-bit binary, i.e., the
MAX = 28 − 1. We have

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
, (21)

where x and y refers to different samples, μx and μy are
the means of x and y, σ2

x and σ2
y are the variances of x

and y, σxy is the covariance of x and y, and c1, c2 are
constants.

In image signal processing, these two matrices
are often used to evaluate the quality of the generated
images, where the PSNR focuses more on the pixel
values and SSIM comprehensively measures the structural
similarity, including brightness, contrast, and structure.
Generally, the higher the PSNR and SSIM values, the
less distortion exists between a perturbated image and
its original counterpart. We calculate the average PSNR
and SSIM of 1,000 adversarial examples (the FGSM,
the PGD, AutoAttack, and the SOAE) with respect
to their original examples on MNIST, CIFAR-10, and
ImageNet-100, respectively. The experiment results
are reported in Table 4. Among all adversarial attack
methods, SOAEs achieve the highest PSNR and SSIM
values, which indicates that our method can generate
low-distortion adversarial examples. This is attributed to
the smoother approximation of the loss function of the
model to effectively find an adversary point within the
Bp(ε) of the input image.
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6. Conclusion
This paper demonstrated a Hessian-free second-order
adversarial example generation method. We further
applied it to adversarial training, which effectively enables
the model to demonstrate stronger robustness against
various attacks, including first-order and second-order
attacks. Benefiting from constructing a Hessian-vector
product in the Krylov subspace, our algorithm avoids
directly computing the Hessian matrix for gradient
updates, which makes second-order methods practical in
adversarial training. In the future, a feasible direction
of our work is to better understand the landscape of the
loss function around the input images, hence selecting a
more reasonable initial point of the Taylor expansion and
making the approximation more accurate.
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