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Visual question answering (VQA) is a pivotal topic at the intersection of computer vision and natural language processing.
This paper addresses the challenges of linguistic bias and bias fusion within invalid regions encountered in existing VQA
models due to insufficient representation of multi-modal features. To overcome those issues, we propose a multi-feature
enhancement scheme. This scheme involves the fusion of one or more features with the original ones, incorporating
discrete cosine transform (DCT) features into the counterfactual reasoning framework. This approach harnesses fine-
grained information and spatial relationships within images and questions, enabling a more refined understanding of the
indirect relationship between images and questions. Consequently, it effectively mitigates linguistic bias and bias fusion
within invalid regions in the model. Extensive experiments are conducted on multiple datasets, including VQA2 and VQA-
CP2, employing various baseline models and fusion techniques, resulting in promising and robust performance.
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1. Introduction
Machine learning has found extensive applications across
various domains (Yang et al., 2023a; 2023b; Surówka
and Ogorzałek, 2022). Among them, visual question
answering (VQA) (Antol et al., 2015) has emerged
as a fundamental component underpinning numerous
cutting-edge interactive artificial intelligence systems,
including visual dialogue (Das et al., 2017b), visual
language navigation (Anderson et al., 2018), and visual
common sense reasoning (Zellers et al., 2019), to name a
few. VQA systems are tasked with the complex challenge
of performing visual analysis, comprehending natural
language, and engaging in multi-modal reasoning.

Recent investigations (Goyal et al., 2017; Agrawal
et al., 2018; Kafle and Kanan, 2017b; 2017a) have
illuminated a noteworthy issue in VQA models—they
may exhibit a tendency to rely on superficial linguistic
correlations rather than robust multi-modal reasoning.
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This issue can be attributed to two primary explanations.
Firstly, there exists a prevalent linguistic bias, where the
question–answer pair tends to have a strong linguistic
correlation, while the image–answer relationship often
appears superficial. For instance, in the VQAv1 dataset,
a significant portion of questions pertaining to the color of
a banana yielded the answer “yellow”. Secondly, another
facet contributing to this challenge is the “visual priming
bias”. Here, the question content tends to align closely
with the presence of objects in the image. As evidenced
in the VQAv1 dataset, questions framed as “Did you
see. . . ?” resulted in a “yes” response approximately
90% of the time. In both of these interpretations, the
model’s focus is predominantly on the question itself,
often neglecting the crucial visual context provided by the
image.

Achieving high accuracy solely based on linguistic
cues can be deceptive. When the test scenario diverges
from the training data, language priors alone prove
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inadequate, leading to the limitations of VQA models
when applied in real-world scenarios.

One immediate strategy to alleviate language bias is
to enrich the training data through additional annotations
or data enhancements. Notably, both visual (Das et
al., 2017a) and textual (Park et al., 2018) interpretations
have been employed to enhance the foundational aspects
of visual understanding (Selvaraju et al., 2019; Wu
and Mooney, 2019). Furthermore, the generation of
counterfactual training samples (Chen et al., 2023;
Abbasnejad et al., 2020; Zhu et al., 2020; Gokhale et al.,
2020; Liang et al., 2020) has proven to be an effective
approach for balancing the training data. It stands out
as a superior debiasing method, particularly on VQA-CP
(Agrawal et al., 2018). These methodologies demonstrate
that debiasing during training can significantly enhance
the generalization capabilities of VQA models. However,
VQA-CP’s primary objective is to assess the model’s
capacity to disentangle learned visual knowledge from
memorized linguistic priors (Agrawal et al., 2018).
Therefore, mastering unbiased reasoning amidst biased
training remains a substantial challenge in the field of
VQA.

Another prevalent approach (Cadene et al., 2019;
Clark et al., 2019) is the utilization of distinct problem
branches to learn language during training. During the
testing phase, priors are mitigated by excluding additional
branches. However, linguistic priors encompass both
“undesirable” linguistic biases (e.g., linking “orange”
to the predominant color “orange”) and “beneficial”
linguistic contexts (e.g., narrowing the answer space
based on the question type, such as “what color”). Simply
excluding extra branches does not fully leverage the
contextual information. Simultaneously, existing models
grapple with single-mode bias in the training data, along
with the challenge of bias fusion within invalid regions of
learning, impacting the model’s overall generalization.

To harness image features more effectively within
the model, this article introduces the DCF-VQA model.
It leverages the concept of multi-feature enhancement
to refine the visual question and answer causal model.
It employs features transformed using the discrete
cosine transform (DCT) (AlFawwaz et al., 2022), which
are mapped into the frequency domain in the causal
model, enhancing the representation of image features.
This enables a more distinct separation of influences
from textual features. The DCT is a widely-used
transformation method in image signal processing,
recognized for its effectiveness in filtering and noise
reduction. DCT transforms features into frequency
domain signals through a linear transformation. It maps
high-dimensional features into low-dimensional signal
space, efficiently compressing redundant information into
a few low-frequency coefficients while reducing the
impact of image noise by eliminating high-frequency

components. In image processing, the discrete
cosine transform can enhance certain texture and shape
information to a considerable extent, aiding in object
correlation and distinction. Additionally, is also explored
the discrete sine transform (DST) (Metwaly et al., 2017)
as another prevalent transformation method in image
processing, which shares similar characteristics with the
discrete cosine transform. In this section, the DST
discrete sine transform serves as a supplementary method
for enhancing image features, providing an alternative
reference.

As illustrated in Fig. 1, the basic model can identify
the image region pertinent to the question, yet it falls
short in fully leveraging the image information, primarily
due to semantic bias. This limitation results in a
superficial correlation between the image and the answer.
For instance, consider the following question–answer
pair: “The woman is smiling”. In this scenario, the
model, constrained by semantic bias, prioritizes the
question-answer relationship, leading to an answer that
closely mirrors the question itself. On the other hand,
the DCF-VQA model, devoid of semantic bias, excels
in harnessing information from the interplay between the
image and the question. It demonstrates superior focus
on the image area relevant to the question, resulting in
more accurate answers. For instance, when posed with the
same question, “The woman is smiling”, the DCF-VQA
model correctly identifies the image context and provides
the accurate response: “The woman is eating”.

This study proposes a DCF-VQA model that utilizes
a multi-feature enhancement strategy to improve visual
question–answering models, which integrates features
extracted through discrete cosine transform into a
counterfactual causal framework. The proposed model
enriches the subtle connection between image and text
queries, and significantly reduces the impact of language
bias. S-MRL and UpDn models are used as the
base structure for the model. Experimental evaluations
performed on the VQAv2 and VQA-CP datasets yielded
satisfactory results, demonstrating the effectiveness of the
method.

2. Related work
The task of visual question answering necessitates the
extraction of features from images and text, followed
by the prediction of answers through the comprehension
of the semantic information conveyed by these features.
However, visual question answering models often struggle
with linguistic bias, due to the insufficient representation
of multi-modal features. This bias manifests as the model
heavily relying on text features while underutilizing
visual features, leading to a strong correlation between
questions and answers, with only a superficial connection
between images and answers. Semantic bias diminishes
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Fig. 1. Example of the DCF-VQA model. The proposed model makes full use of the interaction information between the image and
the problem, and shows great attention to the regions of the image that are relevant to the problem.

the robustness of visual question answering models
and hampers their performance across multiple datasets,
significantly impacting their real-world applicability. This
section introduces various methods and approaches aimed
at mitigating language bias in current visual question
answering tasks. These methods can be categorized
into three main strategies: enhancing visual information,
reducing language priors, and data augmentation.

2.1. Visual information enhancement. HINT offered
a generic approach (Selvaraju et al., 2019) that revolves
around enhancing the model’s visual foundation. This
optimization involves refining the human attention map
and bolstering the alignment between gradient-based
network inputs. The objective is to ensure that the
model not only learns to perceive but also relies on
visual concepts that align with human understanding
and relevance for the task. By providing interpretive
information that is comprehensible and verifiable by
humans, the reliability and interpretability of visual
question answering models can be significantly enhanced.

The ReGAT model (Li et al., 2019) offers an
effective means of improving model accuracy by
capturing the relationship between images and questions.
It has demonstrated impressive results in verifying both
linguistic bias datasets and commonly used datasets.
The ESR model (Shrestha et al., 2020), founded on
a regularization scheme, introduces a straightforward
regularization approach that does not necessitate external
annotations. It has achieved favorable results on datasets

designed to assess language bias. VGQE (Kv and Mittal,
2020) introduces a novel approach involving a problem
encoder and an image encoder. During the encoding
process, it equally leverages both visual and linguistic
modes to furnish ample visual underpinning for problem
features. This approach effectively diminishes the model’s
dependence on language priors through visual feature
supplementation.

The progressive model SAR (Si et al., 2021),
centered around visual entailment selection and ranking,
fully exploits the relationships between images, questions,
and candidate answers. This enhances the utilization of
image information within the model. The Kan model
(Zhang et al., 2020), based on a knowledge enhancement
network, introduces richer visual information. For
different types of problems, it adaptively balances
the significance of visual information and external
knowledge. The adaptive scoring attention module aids
the model in automatically selecting suitable information
sources based on problem types.

2.2. Weakening language prior. AdvReg introduced
a novel regularization scheme that takes the question
encoding of the visual question answering model as input
Ramakrishnan et al. (2018). It employs adversarial
training to confront the visual question answering model
with another model containing only questions. This
process enables the visual question answering model to
recognize and rectify language bias within its question
encoding.



456 G. Yang et al.

RUBI (Cadene et al., 2019) presents learning
strategies that compel the model to provide answers
using information from both modalities, rather than solely
relying on the correlation between the question and the
answer. This is achieved by reducing instances where
a correct answer can be given solely based on textual
features, even when image features are not utilized. The
learn-mixin method (Clark et al., 2019) trains both a
biased model, which makes predictions based on dataset
bias, and a robust model, serving as a reference. This
encourages the model to focus on other patterns within
the data that are more likely to generalize, rather than
relying solely on the correlation between the question and
the answer.

RMFE (Gat et al., 2020) introduces a new
regularization method based on functional entropy. It
aims to balance the contribution of each modality
to the prediction answer, maximizing the information
provided by each modality and promoting more equitable
utilization of information from each mode. CF-VQA
(Niu et al., 2021) incorporates counterfactual causality
thinking to extract the direct influence of language on the
answer, differentiating it from the impact of multi-modal
information on the answer. It retains both the direct and
the indirect influence of vision and language, thereby
compelling the model to allocate more attention to image
information.

2.3. Data enhancement. ActSeek (Teney and Hengel,
2019) introduces the concept of dynamically utilizing
external data. It defines a set of specific weights tailored
to a given question, enabling the retrieval of specific
information for the visual question answering model. This
allows the visual question answering system to reason
and respond effectively beyond the confines of its training
set. The counterfactual sample synthesis training scheme
CSS (Chen et al., 2023) generates corresponding correct
answers as counterfactual training samples by obscuring
key objects and keywords within images. This compels
the visual question-answering model to focus on these
crucial elements.

CL-VQA (Liang et al., 2020) introduces a novel
self-supervised contrastive learning mechanism. It aims
to capture the relationship between original, factual, and
counterfactual samples. GradSup (Teney et al., 2020) puts
forth an auxiliary training objective designed to enhance
the generalization capabilities of neural networks. This
is achieved by leveraging overlooked supervisory signals
within existing datasets. MUTANT (Gokhale et al., 2020)
represents a novel approach in the realm of visual question
answering. It constrains information input by tailoring
the training target. This method effectively balances the
influence of questions and semantic alterations in images
on answer prediction.

The SSL approach (Zhu et al., 2020) introduces

a self-supervised learning framework that operates
independently of external annotations. It helps mitigate
data bias by achieving a balanced dataset. ADA-VQA
(Guo et al., 2021) employs feature space learning to
address language bias issues. It designs an adaptive cosine
loss to differentiate between the frequency and sparsity of
answers based on different question types, thus reducing
limitations imposed by language patterns and diminishing
language priors. CCB-VQA (Yang et al., 2021) bolsters
the model’s ability to learn contextual priors. This is
achieved by establishing content and context branches and
incorporating local critical context and global effective
context.

Inspired by the idea of counterfactual causation,
a multi-feature counterfactual causation structure is
proposed in order to solve the problem of language bias in
existing VQA models. It aims to better utilize the image
information and reduce the influence of linguistic bias.

3. Methods

The proposed model uses a multi-feature enhancement
approach to incorporate a set of features transformed by
a discrete cosine transform into a counterfactual causality
framework. By averaging the computations, it spreads the
predictive distribution of incorrect answers across answers
to increase the probability of a correct answer, thus
improving the performance of the model. The specific
implementation process is as follows.

3.1. Causal structure in visual question answering.
The causal relationship in visual question answering is
shown in Fig. 2, where v ∈ V represents picture data,
q ∈ Q stands for question language data related to the
image, and a ∈ A represents the answer corresponding
to the question image. The influence of V and Q on A
can be divided into single-mode influence and multi-mode
influence. The direct effects of V on A and Q on A are
obtained through V → A and Q → A, respectively.
Multi-model influence M after multi-model fusion affects
A; M is further divided into M1 (effective fusion) and M2

(ineffective fusion). Effective fusion refers to the fusion
that matches the object in the image with the text content
through attention, while ineffective fusion refers to the
fusion that does not match the object and the text exactly.
What the visual Q&A task wants is V,Q → M1 → A, but
in the actual experiment, Q → A and V,Q → M2 → A
interfere with the experiment. Therefore, it is necessary to
exclude the effect of pure language on the experiment and
the effect of mismatching on the experiment.

Firstly, the relationship between question A, answer
A and image V is established. If indirect effects are not
considered, the relationship between them can be simply
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expressed as follows:

Av,q = A(V = v,Q = q). (1)

In practice, there is feature fusion M , expressed as

Y Aq,v,m = A(V = v,Q = q,M = m), (2)

where m = M1(V = v,Q = q) ∪M2(V = v,Q = q).
According to the definition of causality, the total

effect TE of V → v and Q → q can be expressed as

TE = Aq,v,m −Aq∗,v∗,m∗ (3)

with

m∗ = M1 (M = m∗, Q = q∗)
∪M2 (V = v∗, Q = q∗) .

Here v∗ and q∗ mean that no conditions for v
and q are given. The VQA model may have false
answers trained between simple questions, thus skipping
the multi-modal reasoning process. Therefore, it is hoped
that the model will exclude the case where the answer is
derived from the question alone. First, the natural direct
effect NDE of Q on A is obtained,

NDE = Aq,v∗,m∗ −Aq∗,v∗,m∗ . (4)

Because the influence of q on the intermediate
quantity M is blocked, the direct effect of NDE captures
language bias. What the model wants to obtain is the total
indirect effect, that is, the effect of M on A, so the total
indirect effect is obtained by subtracting the total direct
effect from the total effect. The appropriate formula is

TIE = TE − NDE = Aq,v,m −Aq,v∗,m∗ . (5)

The total indirect effects at this time include the total
indirect effects of M1 andM2, and M2 is the non-effective
fusion part, which needs to be removed. Again, in a
similar way to causation, we do the same operation in
frequency space to eliminate linguistic bias. The overall
diagram of the model is shown in Fig. 2.

3.2. Model structure and its application. The UpDn
model (Anderson et al., 2018) combined with DCF-VQA
structure is shown in Fig. 3. By using the word
embedding glove method based on matrix decomposition,
the problem statement uses global information to capture
the relationship and semantic features between words and
generate word vectors. Then a long short-term memory
network (LSTM) is used to capture the dependencies
between words and generate a usable problem feature
vector Q. In the image, effective regions are identified
to extract regional features. The regional features are
taken as the preliminary feature V based on the linear
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Fig. 2. Multi-feature enhanced structure. The proposed method
averages the DCT-transformed features with the original
ones to obtain a higher distribution of correct answers.

layer, and the preliminary feature V1 is obtained by the
discrete cosine transform of V . V and V1 are guided by
the attention of the problem characteristics respectively
to get the final V and V1 involved in causality. Image
features V and V1 are taken as the input of the VA
neural network model, image features V , V1 and problem
features Q are taken as the input of the VQA neural
network model, and problem Q is taken as the input of
the QA neural network model, where the QA* model is
the one that blocks image V , V1 and indirect influence to
obtain the influence of problem Q under the ideal state.
The combination of the VA model, the VQA model and
the QA model is a conventional visual question-answering
model. Subtracting it from the QA* model, we can obtain
an answer distribution free of linguistic bias.

In order to make the model use more features
from images, the DCF-VQA model employs the idea
of multi-feature enhancement to take the features
transformed by the discrete cosine transform into
frequency domain as the images in the causal model,
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Fig. 3. UpDn model and the multi-feature causal combination process.

enhance the representation of image features, and better
strip the influence of text features. The model derivation
is completed with the formula below. First, v and q
are mapped to the frequency space by the DCT, and the
formula is

ṽ = DCT(v), q̃ = DCT(q),

DCT(v) = fn

=
L−1∑

i=0

vi

√
2

L
cos

(
πn

L

(
i+

1

2

))
,

n ∈ {0, 1, . . . , L− 1} .

(6)

Write Pm1 for the probability of each answer
predicted by m1, Pm2 for the probability of each answer
predicted by m2, Pm̃1 for the probability of each answer
predicted by m̃1 and Pm̃2 for the probability of each
answer predicted by m̃2. Because the correct fusion mode
has uniqueness and consistency, and the wrong fusion
mode has diversity, the distance between Pm1 and Pm̃1

distributions is short, and the distance between Pm2 and
Pm̃2 distributions is great, the idea of substitution by
approximation can be expressed as Pm1 ≈ Pm̈1 . Do the
following to these distributions to form a new distribution
Pnew. The formula is

Pnew =
Pm + Pm̃

2
=

Pm1 + Pm2 + Pm̃1 + Pm̃2

2

≈ Pm1 + Pm2 + Pm1 + Pm̃2

2

= Pm1 +
Pm2

2
+

Pm̃2

2
.

(7)

The new answer distribution is

Pm1 +
Pm2

2
+

Pm̀2

2

while to the original answer distribution is Pm1 + Pm2 .
The probability of an incorrect prediction of the answer
is spread over different answers, which is equivalent to
the probability of an incorrect fusion prediction of the

answer being reduced, because, in the end, the highest
prediction probability of the answer is considered to be
the correct answer, so the answer generated by m1 will
be substantially increased. Through repeated cycles,
this effect is cumulative and strengthened, eventually
getting closer to the point where all predicted answers are
produced by m1 fusion correctly, which greatly weakens
the bias effect of incorrect fusion.

3.3. Model implementation details. In order to
facilitate understanding, since image features V and V1

are processed in the same way, this section introduces
features V and V1 collectively as V .

By combining the scores zq, zv and zm of the three
neural network models VQ, VA and VQA (the fusion
function is h), the comprehensive score of zv,q,m is
obtained as shown in (11). Among them, zq, zq and zm
are the language, visual and indirect influence branches,
respectively:

Zq = FQ(q), Zv = FV (v), Zm = FV Q(v, q),
(8)

Zv,q,m = h (Zv, Zq, Zm) . (9)

Because the inputs to the neural model must be valid
inputs, the model will take uniformly distributed learnable
parameters as if no blocking treatment for v and q were
given. In this case, the expressions for Zq , Zv and Zm are

Zq =

{
zq = FQ(q) if Q = q,
z∗q = c if Q = ∅, (10)

Zv =

{
zv = FV (v) if V = v,
z∗v = c if V = ∅, (11)

Zm =

{
zm = FQV (q, v) if Q = q and V = v,
z∗m = c if Q = ∅ or V = ∅.

(12)
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For the fusion function h, there are two nonlinear
fusion modes, harmonic (HM) and SUM:

(HM) h (Zv, Zq, Zm) = log
σ(Zv)×σ(Zq)×σ(Zm)

1+σ(Zv)×σ(Zq)×σ(Zm) ,

(13)

(SUM) h (Zv, Zq, Zm) = log σ (Zv + Zq + Zm) .
(14)

The training strategy is optimized by minimizing the
cross-entropy losses of zv,q,m, zv, and zq,

Lcls = LVQA(v, q, a) + LQA(q, a) + LVA(v, a). (15)

LVQA, LVA, and LQA are obtained through zv,q,m, zv,
and zq . In the triplet (q, v, a), a is the correct answer to
the problem image pair (q, v).

Ideally, the clarity of NDE should be similar to the
total effect TE, and the KL divergence (Kullback–Leibler)
should be used to calculate c, so that the total indirect
effect TIE will not be dominated by the total effect TE
or the natural direct effect NDE, as shown in

Lkl =
1

|A|
∑

a∈A
−p(a | q, v,m) log p (a | q, v∗,m∗) ,

(16)
where p (a | q, v∗,m∗) is zv,q∗,m∗ obtained by the
normalization of Softmax, and p (a | q, v,m) is also
obtained by zv,q,m via Softmax. Only c is updated when
Lkl is minimized. The final loss function consists of Lkl
and Lcls, as shown in (17):

L =
∑

(v,q,a)∈D

Lkl + Lcls. (17)

4. Experiment and analysis
4.1. Dataset used in the experiment. VQA-CP is
a dataset for language bias in visual question-answering
tasks (Agrawal et al., 2018). It aims to test the robustness
of the visual question answering task and promote the
development of the visual question answering task to
multimodel deep association representation and inference
learning. Many studies have found that the existing
visual question-answering models, to a large extent,
make insufficient use of the image basis when answering
questions, and there is only superficial correlation with
training data. Most models can achieve high accuracy
on the VQAv2 dataset, but poor performance on the
VQA-CP. For example, the stack attention based SAN
model achieved a total accuracy of 52.41% on the VQAv2
dataset, but only 24.9% on VQA-CP. In the binary index
of Yes/No, there is a decrease of about 31%.

The VQA-CP dataset consists of two parts,
VQA-CPv1 and VQA-CPv2, each of which includes a
training set, a validation set and a test set. Among them,
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Fig. 4. Composition of the question types of the VQA-CP
dataset.

VQA-CPv1 mainly examines the robustness of the model
to some changes and disturbances in the scene. The
questions and answers in the dataset are the same as those
in VQAv2, but the images are randomly changed, such
as adjusting brightness, contrast and tone, etc. These
transformations may lead to different answers to the same
questions on different images. The 4000 samples selected
from VQAv1 are made up of 1000 samples from the
training set, 1000 samples from the validation set, and
2000 samples from the test machine. These samples
require the model to make full use of features from the
images and problems, inferring more complex and deep
connections between the two modes rather than simply
providing the simple relationship in the training data
of the VQAv1 dataset. For VQA-CPv2 (which mainly
examines the model’s ability to generalize to common
sense reasoning), the questions and answers in the dataset
are the same as those in VQAv2, but the images and
questions are modified, requiring the model to be able to
reason some additional information in order to give the
correct answer. For example, for a problem regarding
the color of an object, with the object being blocked,
the model needs to deduce the relationship between the
occlusion and the blocked object in order to give a correct
answer. Then 8000 samples are selected from VQAv2,
consisting of 2000 samples from the training set, 2000
samples from the verification set, and 4000 samples from
the test set. Similarly to VQA-CPv1, the model is
also required to have a stronger reasoning ability and a
common sense inference ability.

The optimized model in this section mainly
constructs the model based on causal reasoning.
Therefore, compared with the conventional data set
VQAv2, the VQA-CP data set for language bias is more
suitable for examining the effectiveness of the improved
causal relationship and can directly reflect the effect of
the model. Figure 4 shows the distribution of problems in
the VQA-CPv2 test set.



460 G. Yang et al.

�

��

��

��

��

��

��

��

!�

"�

���

� � " � � � � � �

#$
$%

&#
$'

(
)

*+�$�

��� ����� �,� ���-��

Fig. 5. DCF-VQA (UpDn) model training rounds and accuracy
(%).

Table 1. Comparison of the DCF-VQA and UpDn models on
the VQA-CP dataset.

Model All Yes&No Num Other
Updn 37.69 43.17 12.53 41.72

DCF-VQA(HM) 50.08 76.15 16.77 45.56
DCF-VQA(SUM) 54.40 91.38 15.67 45.64

This experiment was carried out under the framework
of Torch 1.10.1 supported by the NVIDIA RTX A5000
graphics card, the Ubuntu 18.04 operating system and the
CUDA 11.4 version. Using the block.bootstrap.pytorch
framework, the file loads the options contained in the yaml
file, creates the corresponding experiment directory, and
begins the training process. The experimental parameters
are as follows: BatchSize is set to 256, the problem input
dimension is 4800, the image input dimension is 2048,
the dropout is set to 0.25, and the learning rate LR is set to
0.0003. Here, the Adam optimizer (Kingma and Ba, 2014)
is used to train the DCF-VQA model. We set the fusion
mode to Block, the fusion module input dimension to
4800 and 2048, and the output dimension to 2048. For
comparison, the train subset of the VQA-CP dataset is
used here for training and the val subset for validation.

As shown in Fig. 5, the overall indicators All, Num
and Yes/No gradually improve, achieving the best effect
in the 22nd round; however, the Num index achieved
the best effect in the 10th round, and then the accuracy
decreased. In order to obtain the overall optimal effect,
the results of the 10th round were taken as an alternative
for further analysis. As shown in Fig. 6, it can be seen
that the experimental loss decreased rapidly in the first
five rounds of training. Then the decreasing amplitude
gradually became smaller and stable in the 22nd round.
In order to achieve the overall optimal result and avoid
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Fig. 6. DCF-VQA model training rounds and the loss.

Table 2. Comparison of DCF-VQA and S-MRL models on the
VQA-CP dataset.

Model All Yes&No Num Other
S-MRL 38.36 42.85 12.81 43.20

DCF-VQA(HM) 50.39 75.75 19.48 45.59
DCF-VQA(SUM) 55.10 88.99 27.60 44.88

the overfitting phenomenon, the experiment was set as 22
epoches and the results of the 22nd round were compared
and analyzed.

4.2. Optimal parameters. DCF-VQA was combined
with UpDn (Agrawal et al., 2018) model and the S-MRL
(Yang et al., 2016) model to select optimal parameters
for the following experiments. This paper analyzes
the nonlinear fusion mode and the distribution mode of
learnable parameters.

The DCF-VQA method is combined with the UpDn
model by using two different nonlinear fusion modes
(HM and SUM), and the comparison results are shown in
Table 1. The experimental results of fusion using HM and
SUM are superior to those of the basic model of UpDn,
and the results are better under the condition of the SUM
fusion. There is a 4.32% gap in the total index, and a
15.23% gap in the Yes/No index and only the Num index
is slightly lower than that of the HM fusion model. The
fusion using the SUM method is better than that using the
HM method.

As the basis, the S-MRL model is combined with
DCF-VQA, and two different nonlinear fusion methods
(HM and SUM) are also used for comparison. The
comparison results are shown in Table 2. The combined
model is superior to the S-MRL model and shows a great
improvement. The SUM fusion method has advantages
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Table 3. Accuracy of learnable parameters in different distribu-
tions (%).

All Yes&No Num Other
S-MRL 38.36 42.85 12.81 43.20

random 31.27 29.69 42.87 28.91
HM prior 46.29 61.88 20.03 45.33

uniform 50.39 75.75 19.48 45.59
random 27.52 28.00 37.88 24.42

SUM prior 38.06 41.43 14.90 42.64
uniform 55.10 88.99 27.60 44.88

in the total index, the Yes/No index and the Num index,
but has disadvantages in the Other index. By comparing
the results of DCF-VQA and the two models, it can be
concluded that the SUM fusion method is more suitable
for the whole model structure and can produce the best
result. Therefore, the SUM fusion method is used to carry
out the next experiment.

Since the inputs to the neural model must be valid
inputs, the model takes learnable parameters as inputs,
blocking V and Q to remove the language bias. In
order to find the influence of learning parameters on
the model under different distribution conditions, the
following experiments were conducted. Based on the
S-MRL model and combined with DCF-VQA, the random
distribution, prior distribution and uniform distribution
methods were used to process the learnable parameters in
the model. The results are shown in Table 3. Under the
conditions of prior and random distributions, the model
results are even worse than for the S-MRL basic model,
and only the Num index yields the highest value under
the fusion mode of HM and SUM, while the other indexes
are lower than the model under the uniform distribution.
Under such a distribution, the effective implementation
of the natural direct effect (NDE) can be ensured and
language bias can be effectively removed. Therefore, the
following experiments are conducted with the uniform
distribution of learnable parameters.

4.3. Comparison of existing methods. In this section,
the proposed DCF-VQA method is compared with the
existing ones on the VQAv2 and VQA-CP datasets, and
the robustness of the model and the effectiveness of
the proposed method are analyzed by comparing the
results on the two datasets with more detailed quantitative
indicators.

DCF-VQA is combined with the basic models
UpDn and S-MRL to provide the required features for
DCF-VQA and remove the language bias existing in
the original model. The combined model was analyzed
and compared with other six models on the common
data set VQAv2. The experimental results are shown in
Table 4. GVQA (Agrawal et al., 2018) converts images

and problems into feature vectors, and uses multi-layer
perceptrons to fuse images and problems. Although the
multi-layer gating mechanism is used for the multi-modal
interaction, it still cannot handle more complex images
and problems, so it performs poorly on the VQAv2
datasets.

The SAN (Yang et al., 2016) model adopts a
multi-level attention mechanism, which can better
represent images and problems, but simple stacked
attention cannot make full use of multi-modal
information, and there is still the problem of language
bias. By fusing the information of images and questions,
the UpDn model generates a feature vector containing
more contextual information, pays better attention to the
key information in the questions, and selects the parts
related to the questions from the images for attention,
which can better capture the semantic relationship
between the answers and questions. Because the model
does not balance the relationship between images and
texts, the UpDn model can also better capture the
semantic relationship between the answers and questions.
Thus, there is still the problem of language bias.

The S-MRL model uses a scene graph to learn
multiple relations, so as to make better use of the semantic
relationship between the images and the problems.
However, the above methods all have the problems of
insufficient use of image information and linguistic bias,
resulting in only superficial correlation between image
information and case. When the model predicts the
answer, it relies more on the relationship between the
question and the answer. CF-VQA using counterfactual
causality can reduce the linguistic biases existing in the
model and effectively improve the robustness of the model
to interference, but it cannot completely eliminate these
linguistic biases.

The DCF-VQA model proposed in this section
considers the multi-feature method to capture the
relationship between images and problems from the
perspective of different features, so as to better remove the
bias from the text. Compared with the CF-VQA method,
DCF-VQA achieved higher accuracy on the VQAv2
data and significantly improved the Num index. When
combined with the UpDn model, the results are similar in
the total index, with an increase of 0.17% in the binary
question Yes/No, but a decrease in the open question
Other and the quantity question Num. When combined
with the S-MRL model, there is a 0.35% improvement in
the total index, a 0.32% and 0.21% improvement in the
binary questions Yes/No and open questions Other, and a
0.95% improvement in the Num index.

In order to test the robustness of the model under
interference, six models were compared again on the
VQA-CP dataset, and the experimental results are also
shown in Table 4. The robustness of the model was
observed by calculating the accuracy difference between
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Table 4. Accuracy (%) comparison of existing methods on the VQAv2 and VQA-CP datasets.

Model Base VQAv2 VQA-CP
All Yes/No Num Other All Yes/No Num Other

GVQA – 48.24 72.03 31.17 34.65 31.3 57.99 13.68 22.14
SAN – 52.41 70.69 39.28 47.84 24.96 38.35 11.14 21.74
UpDn – 63.48 81.18 42.14 55.66 39.74 42.27 11.93 46.05

S-MRL – 63.10 – – – 38.46 42.85 12.81 43.20
LXMERT – 61.16 78.24 44.71 51.89 46.23 42.84 18.91 55.51

CF-VQA(SUM) UpDn 63.54 82.51 43.96 54.30 53.55 91.15 13.03 44.97
CF-VQA(SUM) S-MRL 60.94 81.13 43.86 50.11 55.02 90.32 22.37 45.47

DCF-VQA(SUM) UpDn 63.53 82.68 42.42 54.28 54.40 91.38 15.67 45.64
DCF-VQA(SUM) S-MRL 61.29 81.54 44.77 50.32 55.10 88.99 27.60 44.88
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Fig. 7. Comparison of detailed accuracy (%) between DCF-
VQA and CF-VQA on the VQA-CP dataset.

the two datasets. GVQA, which is unable to process
complex images and problems, also has poor results
on the VQA-CP dataset. Compared with the results
in the VQAv2 dataset, the total accuracy of the model
decreases by 16.94%, the duality index Yes/No decreases
by 14.04%, and the quantity index Num decreases by
17.49%. The openness index fell by 12.51 % on the Other
part; SAN models using multi-level attention mechanisms
experienced a 27.45% decline in the total metrics, 31.71%
decline in Yes/No metrics, 28.14% decline in the Num
metrics, and 26.1% decline in the Other metrics.

The UpDn model, which integrates the information
of images and problems, decreases by 23.74% in the total
index, 38.91% in the Yes/No index, 30.21% in the Num
index, and 9.16% in the Other index. The S-MRL model,
which uses scenario diagrams, has a 24.64% decline in
the overall indicator. The LXMERT model (Hashemi
et al., 2023) has the best results on Other, but it is pulled
apart by DCF-VQA on other metrics. The DCF-VQA
model combined with UpDn decreased the total index by
9.13%, increased the Yes/No index by 8.7%, decreased
the Num index by 27.75% and decreased the Other index
by 8.64%. The DCF-VQA model combined with S-MRL
decreased the total index by 6.19%, increased the Yes/No
index by 7.54%, decreased the Num index by 17.17% and
decreased the Other index by 5.44%.

Table 5. Comparison of the DCF-VQA and S-MRL models on
the VQA-CP dataset.

Model All Yes&No Num Other
UpDn(only q) 18.36 39.45 11.1 9.3
UpDn(only v) 17.56 55.35 0.58 2.42
UpDn(q&v) 48.06 73.6 15.22 43.68

DCF-VQA(q&v) 54.4 91.38 15.67 45.64

In the VQA-CP data set, compared with CF-VQA,
which eliminates language bias, DCF-VQA combined
with the UpDn model improves the total index by 0.85%,
the Yes/No index by 0.23%, the Num index by 2.64%,
and the Other index by 0.67%. The combined DCF-VQA
and S-MRL model increased the total index by 0.08%,
decreased the Yes/No index by 1.33%, increased the Num
index by 5.23% and decreased the Other index by 0.59%.
Compared with CF-VQA, DCF-VQA has a small overall
improvement, but it has a large increase in the Num index.
Compared with other problems, quantitative problems
require more information from images to distinguish the
difference between different objects and the relationship
between similar objects, which can better test the model’s
ability to understand and represent images.

Figure 7 lists more detailed indicators in the
VQA-CP dataset. On quantitative questions such as:
“How many people. . . ?”, the model represented by
multiple visual features can better distinguish different
targets and capture similar targets, and the model accuracy
has been improved. However, the overall accuracy is
still lower than that of binary questions. For instance,
questions like “What color?” and “What type?” are about
50% correct, whereas “yes/no” questions have more than
90% accuracy.

The accuracy rates of a single-mode model and a
multi-mode model in the VQA-CP dataset are shown in
Table 5. The UpDn model is modified as the basic one,
and the accuracy rates of the three models with problem
(only Q), picture (only V ), problem and picture (Q&V )
as input are shown on the VQA-CP dataset. On the
VQA-CP dataset, the accuracy of the model using only
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single-mode data is poor, and most questions cannot be
answered correctly. The model using multi-modal data
has a higher accuracy, and the DCF-VQA strategy can
significantly upgrade the anti-bias ability of the model,
and the accuracy of each indicator has been greatly
improved.

4.4. Model example display. This section provides
several examples of the DCF-VQA model. As shown in
Fig. 8, the model DCF-VQA stripped of semantic bias
can use more information from the interaction between
the image and the image question, pay better attention
to the image area related to the question, and give the
correct answer. However, it is difficult for the DCF-VQA
model to accurately learn the fine-grained features in
an image and efficiently determine the corresponding
attention regions when encountering image–text pairs
with small required image feature regions. As a result,
the model often gives incorrect answers to questions that
require attention to detailed aspects of the image, as
illustrated by the last two examples in Fig. 9.

Figure 9 shows several examples of the same
questions. For questions about what color is the
frisbee or what food is in the box, the DCF-VQA
model demonstrates its capability to respond accurately
without succumbing to linguistic biases, providing correct
answers across various images. This performance
underscores the model’s resilience against linguistic bias
and showcases its enhanced proficiency in utilizing visual
features for answer prediction.

5. Conclusions

In this study, the utilization of image data in the model
was improved based on a multi-feature enhancement
approach. Based on this approach, an improved
DCF-VQA model was proposed, which achieves a deeper
understanding of the relationship between images and
text by incorporating DCT-transformed image features.
The effect of single-mode bias is mitigated by employing
counterfactual causality, which reduces the apparent
correlation between the image and the corresponding
answer. The experimental results show that feature
fusion using multi-feature representations significantly
enhances the model’s focus on image data, reduces surface
connections between images and answers, and improves
the accuracy of the model. In the future, we plan to
explore the potential of relational networks in recognizing
differences and connections between various targets, as
well as investigate the association between image data
and answers. Integration of image convolutional neural
networks to filter out noise and present image data more
comprehensively is also being considered.
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