online read us now
Paper details
Number 1 - March 2005
Volume 15 - 2005
A novel continuous model to approximate time Petri nets: Modelling and analysis
Tianlong Gu, Rongsheng Dong
Abstract
In order to approximate discrete-event systems in which there exist considerable states and events, David and Alla define a continuous Petri net (CPN). So far, CPNs have been a useful tool not only for approximating discrete-event systems but also for modelling continuous processes. Due to different ways of calculating instantaneous firing speeds of transitions, various continuous Petri net models, such as the CCPN (constant speed CPN), VCPN (variable speed CPN) and the ACPN (asymptotic CPN), have been proposed, where the continuous flow is specified uniquely by maximal firing speeds. However, in applications such as chemical processes there exist situations where the continuous flow must be above some minimal speed or in the range of minimal and maximal speeds. In this paper, from the point of view of approximating a time Petri net, the CPN is augmented with maximal and minimal firing speeds, and a novel continuous model, i.e., the Interval speed CPN (ICPN) is defined. The enabling and firing semantics of transitions of the ICPN are discussed, and the facilitating of continuous transitions is classified into three levels: 0-level, 1-level and 2-level. Some policies to resolve the conflicts and algorithms to undertake the behavioural analysis for the ICPN are developed. In addition, a chemical process example is presented.
Keywords
continuous Petri nets, hybrid systems, discrete event systems