online read us now
Paper details
Number 2 - June 2017
Volume 27 - 2017
Element partition trees for h-refined meshes to optimize direct solver performance. Part I: Dynamic programming
Hassan Aboueisha, Victor Manuel Calo, Konrad Jopek, Mikhail Moshkov, Anna Paszyńska, Maciej Paszyński, Marcin Skotniczny
Abstract
We consider a class of two- and three-dimensional h-refined meshes generated by an adaptive finite element method. We introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended for the case of hp-adaptive grids.
Keywords
h-adaptive finite element method, ordering, element partition tree, extensions of dynamic rogramming, multifrontal direct solvers