International Journal of applied mathematics and computer science

online read us now

Paper details

Number 3 - September 2019
Volume 29 - 2019

Using neural networks with data quantization for time series analysis in LHC superconducting magnets

Maciej Wielgosz, Andrzej Skoczeń

Abstract
The aim of this paper is to present a model based on the recurrent neural network (RNN) architecture, the long short-term memory (LSTM) in particular, for modeling the work parameters of Large Hadron Collider (LHC) superconducting magnets. High-resolution data available in the post mortem database were used to train a set of models and compare their performance for various hyper-parameters such as input data quantization and the number of cells. A novel approach to signal level quantization allowed reducing the size of the model, simplifying the tuning of the magnet monitoring system and making the process scalable. The paper shows that an RNN such as the LSTM or a gated recurrent unit (GRU) can be used for modeling high-resolution signals with the accuracy of over 0.95 and a small number of parameters, ranging from 800 to 1200. This makes the solution suitable for hardware implementation, which is essential in the case of monitoring the performance critical and high-speed signal of LHC superconducting magnets.

Keywords
Large Hadron Collider, LSTM architecture, signal modelling

DOI
10.2478/amcs-2019-0037