online read us now
Paper details
Number 4 - October 2001
Volume 11 - 2001
Approximation of a solidification problem
Rajae Aboulaїch, Ilham Haggouch, Ali Souissi
Abstract
A two-dimensional Stefan problem is usually introduced as a model of solidification, melting or sublimation phenomena. The two-phase Stefan problem has been studied as a direct problem, where the free boundary separating the two regions is eliminated using a variational inequality (Baiocchi, 1977; Baiocchi et al., 1973; Rodrigues, 1980; Saguez, 1980; Srunk and Friedman, 1994), the enthalpy function (Ciavaldini, 1972; Lions, 1969; Nochetto et al., 1991; Saguez, 1980), or a control problem (El Bagdouri, 1987; Peneau, 1995; Saguez, 1980). In the present work, we provide a new formulation leading to a shape optimization problem. For a semidiscretization in time, we consider an Euler scheme. Under some restrictions related to stability conditions, we prove an L2-rate of convergence of order 1 for the temperature. In the last part, we study the existence of an optimal shape, compute the shape gradient, and suggest a numerical algorithm to approximate the free boundary. The numerical results obtained show that this method is more effcient compared with the others.
Keywords
Stefan problem, free boundary, shape optimization, Euler method, finite-element method